L(s) = 1 | + (−1.36e3 + 478. i)2-s + (1.63e6 − 1.30e6i)4-s − 1.38e7·5-s − 1.09e9i·7-s + (−1.61e9 + 2.57e9i)8-s + (1.88e10 − 6.60e9i)10-s − 4.42e10i·11-s + 9.88e10i·13-s + (5.22e11 + 1.49e12i)14-s + (9.78e11 − 4.28e12i)16-s + 4.30e12i·17-s − 6.19e12·19-s + (−2.26e13 + 1.80e13i)20-s + (2.11e13 + 6.05e13i)22-s + 1.44e14·23-s + ⋯ |
L(s) = 1 | + (−0.943 + 0.330i)2-s + (0.781 − 0.623i)4-s − 0.632·5-s − 1.46i·7-s + (−0.532 + 0.846i)8-s + (0.597 − 0.208i)10-s − 0.514i·11-s + 0.198i·13-s + (0.482 + 1.37i)14-s + (0.222 − 0.974i)16-s + 0.518i·17-s − 0.231·19-s + (−0.494 + 0.394i)20-s + (0.169 + 0.485i)22-s + 0.727·23-s + ⋯ |
Λ(s)=(=(72s/2ΓC(s)L(s)(−0.384−0.923i)Λ(22−s)
Λ(s)=(=(72s/2ΓC(s+21/2)L(s)(−0.384−0.923i)Λ(1−s)
Degree: |
2 |
Conductor: |
72
= 23⋅32
|
Sign: |
−0.384−0.923i
|
Analytic conductor: |
201.223 |
Root analytic conductor: |
14.1853 |
Motivic weight: |
21 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ72(35,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 72, ( :21/2), −0.384−0.923i)
|
Particular Values
L(11) |
≈ |
0.02056406791 |
L(21) |
≈ |
0.02056406791 |
L(223) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.36e3−478.i)T |
| 3 | 1 |
good | 5 | 1+1.38e7T+4.76e14T2 |
| 7 | 1+1.09e9iT−5.58e17T2 |
| 11 | 1+4.42e10iT−7.40e21T2 |
| 13 | 1−9.88e10iT−2.47e23T2 |
| 17 | 1−4.30e12iT−6.90e25T2 |
| 19 | 1+6.19e12T+7.14e26T2 |
| 23 | 1−1.44e14T+3.94e28T2 |
| 29 | 1+1.75e14T+5.13e30T2 |
| 31 | 1+3.72e15iT−2.08e31T2 |
| 37 | 1+3.46e16iT−8.55e32T2 |
| 41 | 1+1.63e16iT−7.38e33T2 |
| 43 | 1+1.19e17T+2.00e34T2 |
| 47 | 1+2.37e17T+1.30e35T2 |
| 53 | 1−3.01e17T+1.62e36T2 |
| 59 | 1+1.83e18iT−1.54e37T2 |
| 61 | 1−1.78e18iT−3.10e37T2 |
| 67 | 1+1.98e19T+2.22e38T2 |
| 71 | 1+4.06e19T+7.52e38T2 |
| 73 | 1+8.70e18T+1.34e39T2 |
| 79 | 1−3.94e19iT−7.08e39T2 |
| 83 | 1+5.89e19iT−1.99e40T2 |
| 89 | 1+3.06e20iT−8.65e40T2 |
| 97 | 1−8.97e20T+5.27e41T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.86132388847769170892640132869, −10.02160760526458356722103318806, −8.777456231070154193547203639811, −7.75532249524154713911521915005, −7.08192430928741164890066569922, −5.93528957776740292308350167251, −4.39667926460702973533418718652, −3.32290696029129225600824502739, −1.75909580150700093699538524152, −0.68076613142950523384761081668,
0.00746980967300814516617844286, 1.39458874428113589378849582360, 2.46397985181050862727732812147, 3.34257488040877385429899859169, 4.89261115620107809617030952227, 6.26164745358750877098285918276, 7.41595308184708066923703852518, 8.431531706700713644663151347628, 9.192245091056178340081448671465, 10.26403454062706405550453944943