L(s) = 1 | + (0.409 + 1.35i)2-s + (−1.12 + 1.31i)3-s + (−1.66 + 1.10i)4-s + (−0.565 − 0.978i)5-s + (−2.24 − 0.988i)6-s + (3.71 + 2.14i)7-s + (−2.18 − 1.79i)8-s + (−0.456 − 2.96i)9-s + (1.09 − 1.16i)10-s + (1.00 + 0.582i)11-s + (0.419 − 3.43i)12-s + (2.64 − 1.52i)13-s + (−1.38 + 5.90i)14-s + (1.92 + 0.360i)15-s + (1.54 − 3.69i)16-s + 1.49i·17-s + ⋯ |
L(s) = 1 | + (0.289 + 0.957i)2-s + (−0.651 + 0.758i)3-s + (−0.832 + 0.554i)4-s + (−0.252 − 0.437i)5-s + (−0.915 − 0.403i)6-s + (1.40 + 0.810i)7-s + (−0.771 − 0.636i)8-s + (−0.152 − 0.988i)9-s + (0.345 − 0.368i)10-s + (0.304 + 0.175i)11-s + (0.121 − 0.992i)12-s + (0.733 − 0.423i)13-s + (−0.369 + 1.57i)14-s + (0.496 + 0.0932i)15-s + (0.385 − 0.922i)16-s + 0.362i·17-s + ⋯ |
Λ(s)=(=(72s/2ΓC(s)L(s)(−0.329−0.944i)Λ(2−s)
Λ(s)=(=(72s/2ΓC(s+1/2)L(s)(−0.329−0.944i)Λ(1−s)
Degree: |
2 |
Conductor: |
72
= 23⋅32
|
Sign: |
−0.329−0.944i
|
Analytic conductor: |
0.574922 |
Root analytic conductor: |
0.758236 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ72(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 72, ( :1/2), −0.329−0.944i)
|
Particular Values
L(1) |
≈ |
0.503793+0.709479i |
L(21) |
≈ |
0.503793+0.709479i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.409−1.35i)T |
| 3 | 1+(1.12−1.31i)T |
good | 5 | 1+(0.565+0.978i)T+(−2.5+4.33i)T2 |
| 7 | 1+(−3.71−2.14i)T+(3.5+6.06i)T2 |
| 11 | 1+(−1.00−0.582i)T+(5.5+9.52i)T2 |
| 13 | 1+(−2.64+1.52i)T+(6.5−11.2i)T2 |
| 17 | 1−1.49iT−17T2 |
| 19 | 1+3.42T+19T2 |
| 23 | 1+(3.85+6.68i)T+(−11.5+19.9i)T2 |
| 29 | 1+(0.709−1.22i)T+(−14.5−25.1i)T2 |
| 31 | 1+(4.66−2.69i)T+(15.5−26.8i)T2 |
| 37 | 1+2.97iT−37T2 |
| 41 | 1+(4.23−2.44i)T+(20.5−35.5i)T2 |
| 43 | 1+(1.74−3.01i)T+(−21.5−37.2i)T2 |
| 47 | 1+(1.77−3.08i)T+(−23.5−40.7i)T2 |
| 53 | 1−11.2T+53T2 |
| 59 | 1+(−7.50+4.33i)T+(29.5−51.0i)T2 |
| 61 | 1+(3.16+1.82i)T+(30.5+52.8i)T2 |
| 67 | 1+(5.58+9.66i)T+(−33.5+58.0i)T2 |
| 71 | 1−2.54T+71T2 |
| 73 | 1+7.06T+73T2 |
| 79 | 1+(2.24+1.29i)T+(39.5+68.4i)T2 |
| 83 | 1+(3.98+2.30i)T+(41.5+71.8i)T2 |
| 89 | 1−8.63iT−89T2 |
| 97 | 1+(−3.35+5.81i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.97978302154472165615105386294, −14.45517755311644382171344605744, −12.69496720952127909143360765253, −11.85539473569968757729645079643, −10.58436726241657733162589750484, −8.875515933288566899556320357171, −8.238223075517799309705814316295, −6.31876240618624453363936905294, −5.17062500644679992682256880194, −4.18520632964577858566156115719,
1.62792039028054742034256897381, 4.06632531188568629328634915562, 5.54589142181019492760130056483, 7.21319963037127785582048995754, 8.515452925765671979536433076908, 10.38996401748245505406927314155, 11.34870139642146937120036835624, 11.69542468693414966146258707567, 13.28362393395700364297206153459, 13.93035407755272585140931107040