L(s) = 1 | + (−0.250 + 2.81i)2-s + (−3.80 + 3.53i)3-s + (−7.87 − 1.41i)4-s + (10.8 + 18.8i)5-s + (−9.00 − 11.6i)6-s + (−10.5 − 6.09i)7-s + (5.94 − 21.8i)8-s + (1.99 − 26.9i)9-s + (−55.7 + 25.8i)10-s + (−22.8 − 13.1i)11-s + (34.9 − 22.4i)12-s + (−24.0 + 13.8i)13-s + (19.8 − 28.2i)14-s + (−107. − 33.2i)15-s + (60.0 + 22.2i)16-s + 56.3i·17-s + ⋯ |
L(s) = 1 | + (−0.0885 + 0.996i)2-s + (−0.732 + 0.680i)3-s + (−0.984 − 0.176i)4-s + (0.971 + 1.68i)5-s + (−0.612 − 0.790i)6-s + (−0.570 − 0.329i)7-s + (0.262 − 0.964i)8-s + (0.0739 − 0.997i)9-s + (−1.76 + 0.819i)10-s + (−0.625 − 0.360i)11-s + (0.841 − 0.540i)12-s + (−0.512 + 0.295i)13-s + (0.378 − 0.538i)14-s + (−1.85 − 0.572i)15-s + (0.937 + 0.347i)16-s + 0.804i·17-s + ⋯ |
Λ(s)=(=(72s/2ΓC(s)L(s)(−0.861+0.507i)Λ(4−s)
Λ(s)=(=(72s/2ΓC(s+3/2)L(s)(−0.861+0.507i)Λ(1−s)
Degree: |
2 |
Conductor: |
72
= 23⋅32
|
Sign: |
−0.861+0.507i
|
Analytic conductor: |
4.24813 |
Root analytic conductor: |
2.06110 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ72(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 72, ( :3/2), −0.861+0.507i)
|
Particular Values
L(2) |
≈ |
0.210360−0.770911i |
L(21) |
≈ |
0.210360−0.770911i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.250−2.81i)T |
| 3 | 1+(3.80−3.53i)T |
good | 5 | 1+(−10.8−18.8i)T+(−62.5+108.i)T2 |
| 7 | 1+(10.5+6.09i)T+(171.5+297.i)T2 |
| 11 | 1+(22.8+13.1i)T+(665.5+1.15e3i)T2 |
| 13 | 1+(24.0−13.8i)T+(1.09e3−1.90e3i)T2 |
| 17 | 1−56.3iT−4.91e3T2 |
| 19 | 1−80.9T+6.85e3T2 |
| 23 | 1+(4.32+7.49i)T+(−6.08e3+1.05e4i)T2 |
| 29 | 1+(43.8−75.8i)T+(−1.21e4−2.11e4i)T2 |
| 31 | 1+(174.−100.i)T+(1.48e4−2.57e4i)T2 |
| 37 | 1−53.3iT−5.06e4T2 |
| 41 | 1+(−398.+229.i)T+(3.44e4−5.96e4i)T2 |
| 43 | 1+(105.−181.i)T+(−3.97e4−6.88e4i)T2 |
| 47 | 1+(168.−292.i)T+(−5.19e4−8.99e4i)T2 |
| 53 | 1−84.2T+1.48e5T2 |
| 59 | 1+(86.9−50.2i)T+(1.02e5−1.77e5i)T2 |
| 61 | 1+(−342.−197.i)T+(1.13e5+1.96e5i)T2 |
| 67 | 1+(−68.5−118.i)T+(−1.50e5+2.60e5i)T2 |
| 71 | 1−766.T+3.57e5T2 |
| 73 | 1−464.T+3.89e5T2 |
| 79 | 1+(906.+523.i)T+(2.46e5+4.26e5i)T2 |
| 83 | 1+(−1.13e3−654.i)T+(2.85e5+4.95e5i)T2 |
| 89 | 1−403.iT−7.04e5T2 |
| 97 | 1+(29.9−51.9i)T+(−4.56e5−7.90e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.79150291439974619905043387110, −14.11253224151836345373487404946, −12.89826294614310209684176852068, −10.99509344397618257737659609293, −10.17502575361191576278567203865, −9.415210421050602709405628343449, −7.30064237414090203654681257455, −6.37039881749866421680548495470, −5.43873623785836356670440934761, −3.45703226123120746340417404636,
0.58498524360196863225773825356, 2.17399078352381050768041401999, 4.91299536642407423504543157094, 5.65083235934047549341546772076, 7.83150958437451100260480394218, 9.272535661579276706896907433138, 9.978995065653751104933496912568, 11.57865035751800894546295563496, 12.59478911738940310739243288515, 12.98598387135374826671233218014