L(s) = 1 | + (−1.47 + 2.41i)2-s + (5.12 − 0.875i)3-s + (−3.64 − 7.11i)4-s + (3.60 + 6.24i)5-s + (−5.44 + 13.6i)6-s + (6.44 + 3.72i)7-s + (22.5 + 1.69i)8-s + (25.4 − 8.97i)9-s + (−20.4 − 0.510i)10-s + (35.6 + 20.5i)11-s + (−24.9 − 33.2i)12-s + (−26.5 + 15.3i)13-s + (−18.5 + 10.0i)14-s + (23.9 + 28.8i)15-s + (−37.3 + 51.9i)16-s + 46.2i·17-s + ⋯ |
L(s) = 1 | + (−0.521 + 0.853i)2-s + (0.985 − 0.168i)3-s + (−0.456 − 0.889i)4-s + (0.322 + 0.558i)5-s + (−0.370 + 0.928i)6-s + (0.348 + 0.201i)7-s + (0.997 + 0.0749i)8-s + (0.943 − 0.332i)9-s + (−0.645 − 0.0161i)10-s + (0.977 + 0.564i)11-s + (−0.599 − 0.800i)12-s + (−0.566 + 0.327i)13-s + (−0.353 + 0.192i)14-s + (0.412 + 0.496i)15-s + (−0.583 + 0.811i)16-s + 0.659i·17-s + ⋯ |
Λ(s)=(=(72s/2ΓC(s)L(s)(0.420−0.907i)Λ(4−s)
Λ(s)=(=(72s/2ΓC(s+3/2)L(s)(0.420−0.907i)Λ(1−s)
Degree: |
2 |
Conductor: |
72
= 23⋅32
|
Sign: |
0.420−0.907i
|
Analytic conductor: |
4.24813 |
Root analytic conductor: |
2.06110 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ72(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 72, ( :3/2), 0.420−0.907i)
|
Particular Values
L(2) |
≈ |
1.37473+0.877665i |
L(21) |
≈ |
1.37473+0.877665i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(1.47−2.41i)T |
| 3 | 1+(−5.12+0.875i)T |
good | 5 | 1+(−3.60−6.24i)T+(−62.5+108.i)T2 |
| 7 | 1+(−6.44−3.72i)T+(171.5+297.i)T2 |
| 11 | 1+(−35.6−20.5i)T+(665.5+1.15e3i)T2 |
| 13 | 1+(26.5−15.3i)T+(1.09e3−1.90e3i)T2 |
| 17 | 1−46.2iT−4.91e3T2 |
| 19 | 1+31.7T+6.85e3T2 |
| 23 | 1+(25.4+44.1i)T+(−6.08e3+1.05e4i)T2 |
| 29 | 1+(−135.+234.i)T+(−1.21e4−2.11e4i)T2 |
| 31 | 1+(226.−130.i)T+(1.48e4−2.57e4i)T2 |
| 37 | 1+372.iT−5.06e4T2 |
| 41 | 1+(159.−91.8i)T+(3.44e4−5.96e4i)T2 |
| 43 | 1+(−41.4+71.8i)T+(−3.97e4−6.88e4i)T2 |
| 47 | 1+(141.−244.i)T+(−5.19e4−8.99e4i)T2 |
| 53 | 1−442.T+1.48e5T2 |
| 59 | 1+(563.−325.i)T+(1.02e5−1.77e5i)T2 |
| 61 | 1+(44.7+25.8i)T+(1.13e5+1.96e5i)T2 |
| 67 | 1+(360.+623.i)T+(−1.50e5+2.60e5i)T2 |
| 71 | 1+794.T+3.57e5T2 |
| 73 | 1+639.T+3.89e5T2 |
| 79 | 1+(−901.−520.i)T+(2.46e5+4.26e5i)T2 |
| 83 | 1+(80.8+46.6i)T+(2.85e5+4.95e5i)T2 |
| 89 | 1−1.27e3iT−7.04e5T2 |
| 97 | 1+(−181.+314.i)T+(−4.56e5−7.90e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.62188343164820605066434314636, −13.77352660744667635419453875961, −12.33375928367409332716684051350, −10.52809247846080434101867340827, −9.505952248036107469330787116166, −8.541860361330031749023220309789, −7.32646315016493791030986611338, −6.32892433671316700605465567449, −4.33055511806290096960641817129, −1.96600667225499185095085955346,
1.48191464641600841130980792101, 3.25615479549158166976864309305, 4.74250464596994374271079064157, 7.29794568911162416777825040543, 8.581312396851243417833172780608, 9.278345441751218919850475326466, 10.36833112166666863896479578055, 11.69164683813865324574449836559, 12.88114210775428819393391572207, 13.76905412551933317345626169699