L(s) = 1 | + (2.42 − 1.45i)2-s + (1.76 − 4.88i)3-s + (3.78 − 7.04i)4-s + (4.95 + 8.58i)5-s + (−2.82 − 14.4i)6-s + (11.4 + 6.61i)7-s + (−1.04 − 22.6i)8-s + (−20.7 − 17.2i)9-s + (24.5 + 13.6i)10-s + (−23.4 − 13.5i)11-s + (−27.7 − 30.9i)12-s + (−41.1 + 23.7i)13-s + (37.3 − 0.577i)14-s + (50.7 − 9.11i)15-s + (−35.3 − 53.3i)16-s + 88.9i·17-s + ⋯ |
L(s) = 1 | + (0.858 − 0.513i)2-s + (0.338 − 0.940i)3-s + (0.473 − 0.881i)4-s + (0.443 + 0.768i)5-s + (−0.192 − 0.981i)6-s + (0.618 + 0.356i)7-s + (−0.0463 − 0.998i)8-s + (−0.770 − 0.637i)9-s + (0.774 + 0.431i)10-s + (−0.642 − 0.370i)11-s + (−0.668 − 0.743i)12-s + (−0.878 + 0.507i)13-s + (0.713 − 0.0110i)14-s + (0.873 − 0.156i)15-s + (−0.552 − 0.833i)16-s + 1.26i·17-s + ⋯ |
Λ(s)=(=(72s/2ΓC(s)L(s)(0.225+0.974i)Λ(4−s)
Λ(s)=(=(72s/2ΓC(s+3/2)L(s)(0.225+0.974i)Λ(1−s)
Degree: |
2 |
Conductor: |
72
= 23⋅32
|
Sign: |
0.225+0.974i
|
Analytic conductor: |
4.24813 |
Root analytic conductor: |
2.06110 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ72(11,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 72, ( :3/2), 0.225+0.974i)
|
Particular Values
L(2) |
≈ |
2.07104−1.64656i |
L(21) |
≈ |
2.07104−1.64656i |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−2.42+1.45i)T |
| 3 | 1+(−1.76+4.88i)T |
good | 5 | 1+(−4.95−8.58i)T+(−62.5+108.i)T2 |
| 7 | 1+(−11.4−6.61i)T+(171.5+297.i)T2 |
| 11 | 1+(23.4+13.5i)T+(665.5+1.15e3i)T2 |
| 13 | 1+(41.1−23.7i)T+(1.09e3−1.90e3i)T2 |
| 17 | 1−88.9iT−4.91e3T2 |
| 19 | 1−88.1T+6.85e3T2 |
| 23 | 1+(−89.5−155.i)T+(−6.08e3+1.05e4i)T2 |
| 29 | 1+(−47.7+82.7i)T+(−1.21e4−2.11e4i)T2 |
| 31 | 1+(23.6−13.6i)T+(1.48e4−2.57e4i)T2 |
| 37 | 1+117.iT−5.06e4T2 |
| 41 | 1+(258.−149.i)T+(3.44e4−5.96e4i)T2 |
| 43 | 1+(−151.+262.i)T+(−3.97e4−6.88e4i)T2 |
| 47 | 1+(254.−440.i)T+(−5.19e4−8.99e4i)T2 |
| 53 | 1+415.T+1.48e5T2 |
| 59 | 1+(−361.+208.i)T+(1.02e5−1.77e5i)T2 |
| 61 | 1+(555.+320.i)T+(1.13e5+1.96e5i)T2 |
| 67 | 1+(210.+364.i)T+(−1.50e5+2.60e5i)T2 |
| 71 | 1−655.T+3.57e5T2 |
| 73 | 1−1.02e3T+3.89e5T2 |
| 79 | 1+(503.+290.i)T+(2.46e5+4.26e5i)T2 |
| 83 | 1+(437.+252.i)T+(2.85e5+4.95e5i)T2 |
| 89 | 1+407.iT−7.04e5T2 |
| 97 | 1+(479.−830.i)T+(−4.56e5−7.90e5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.91247194444128297858659413744, −12.90987264495768779404400449973, −11.84573556165835793106627463306, −10.91680415587245305741505595949, −9.535476781532531355416343115649, −7.78856744671266819586010299266, −6.53564464127418003177959459776, −5.32647663256936260067794702601, −3.12058678890598239199411571828, −1.83287631348350167287001722023,
2.84776784243613069750441332941, 4.83056697294667807353039183663, 5.14933499592163271503703590476, 7.32569628652441482539556427190, 8.507612595387772481942524930114, 9.800168083618391960895809436879, 11.12831936082991839770580908140, 12.42635470097930364821674624754, 13.54889191088466792645527972223, 14.41182144736593139911086275521