L(s) = 1 | + (−0.608 + 1.27i)2-s + (−1.71 + 0.231i)3-s + (−1.25 − 1.55i)4-s + (−1.74 + 3.01i)5-s + (0.748 − 2.33i)6-s + (−1.80 + 1.04i)7-s + (2.75 − 0.660i)8-s + (2.89 − 0.795i)9-s + (−2.79 − 4.06i)10-s + (−0.116 + 0.0675i)11-s + (2.52 + 2.37i)12-s + (2.63 + 1.52i)13-s + (−0.231 − 2.94i)14-s + (2.29 − 5.58i)15-s + (−0.830 + 3.91i)16-s + 4.19i·17-s + ⋯ |
L(s) = 1 | + (−0.430 + 0.902i)2-s + (−0.990 + 0.133i)3-s + (−0.629 − 0.777i)4-s + (−0.779 + 1.35i)5-s + (0.305 − 0.952i)6-s + (−0.683 + 0.394i)7-s + (0.972 − 0.233i)8-s + (0.964 − 0.265i)9-s + (−0.883 − 1.28i)10-s + (−0.0352 + 0.0203i)11-s + (0.727 + 0.685i)12-s + (0.731 + 0.422i)13-s + (−0.0619 − 0.786i)14-s + (0.591 − 1.44i)15-s + (−0.207 + 0.978i)16-s + 1.01i·17-s + ⋯ |
Λ(s)=(=(72s/2ΓC(s)L(s)(−0.932−0.360i)Λ(2−s)
Λ(s)=(=(72s/2ΓC(s+1/2)L(s)(−0.932−0.360i)Λ(1−s)
Degree: |
2 |
Conductor: |
72
= 23⋅32
|
Sign: |
−0.932−0.360i
|
Analytic conductor: |
0.574922 |
Root analytic conductor: |
0.758236 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ72(59,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 72, ( :1/2), −0.932−0.360i)
|
Particular Values
L(1) |
≈ |
0.0734457+0.394335i |
L(21) |
≈ |
0.0734457+0.394335i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.608−1.27i)T |
| 3 | 1+(1.71−0.231i)T |
good | 5 | 1+(1.74−3.01i)T+(−2.5−4.33i)T2 |
| 7 | 1+(1.80−1.04i)T+(3.5−6.06i)T2 |
| 11 | 1+(0.116−0.0675i)T+(5.5−9.52i)T2 |
| 13 | 1+(−2.63−1.52i)T+(6.5+11.2i)T2 |
| 17 | 1−4.19iT−17T2 |
| 19 | 1−0.919T+19T2 |
| 23 | 1+(0.689−1.19i)T+(−11.5−19.9i)T2 |
| 29 | 1+(4.24+7.34i)T+(−14.5+25.1i)T2 |
| 31 | 1+(−4.39−2.53i)T+(15.5+26.8i)T2 |
| 37 | 1+1.61iT−37T2 |
| 41 | 1+(−1.79−1.03i)T+(20.5+35.5i)T2 |
| 43 | 1+(−5.41−9.37i)T+(−21.5+37.2i)T2 |
| 47 | 1+(−0.205−0.356i)T+(−23.5+40.7i)T2 |
| 53 | 1−0.968T+53T2 |
| 59 | 1+(−3.88−2.24i)T+(29.5+51.0i)T2 |
| 61 | 1+(−7.44+4.29i)T+(30.5−52.8i)T2 |
| 67 | 1+(−3.15+5.46i)T+(−33.5−58.0i)T2 |
| 71 | 1−11.9T+71T2 |
| 73 | 1+4.06T+73T2 |
| 79 | 1+(10.8−6.27i)T+(39.5−68.4i)T2 |
| 83 | 1+(−5.23+3.02i)T+(41.5−71.8i)T2 |
| 89 | 1+8.35iT−89T2 |
| 97 | 1+(0.477+0.826i)T+(−48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−15.51696265619165483476802732301, −14.45189246662506312492286272234, −13.01272984312161346567660095415, −11.52697555067362037596343642602, −10.65620622063244349373937613232, −9.596736430884011093391556177854, −7.88534332612652737367525116376, −6.66940874963970156513598629788, −5.97572994778091420032943754136, −3.98966305529048461110879331557,
0.73549784888568791311413908671, 3.90969286045348549593597225416, 5.20723990760421266340880355064, 7.27115535437815740836172397684, 8.587903196434985901034352347965, 9.792387384558219904766919260241, 11.01261926034738595552759382896, 11.96672221569593507097049883167, 12.74184592215779855643027629883, 13.49394757874877752798320310684