L(s) = 1 | + (−1.12 − 0.862i)2-s + (0.418 + 1.68i)3-s + (0.511 + 1.93i)4-s + (−1.60 + 2.78i)5-s + (0.980 − 2.24i)6-s + (1.82 − 1.05i)7-s + (1.09 − 2.60i)8-s + (−2.64 + 1.40i)9-s + (4.20 − 1.73i)10-s + (3.47 − 2.00i)11-s + (−3.03 + 1.66i)12-s + (−0.341 − 0.197i)13-s + (−2.94 − 0.392i)14-s + (−5.35 − 1.53i)15-s + (−3.47 + 1.97i)16-s − 1.20i·17-s + ⋯ |
L(s) = 1 | + (−0.792 − 0.609i)2-s + (0.241 + 0.970i)3-s + (0.255 + 0.966i)4-s + (−0.719 + 1.24i)5-s + (0.400 − 0.916i)6-s + (0.688 − 0.397i)7-s + (0.386 − 0.922i)8-s + (−0.883 + 0.469i)9-s + (1.33 − 0.548i)10-s + (1.04 − 0.605i)11-s + (−0.876 + 0.481i)12-s + (−0.0948 − 0.0547i)13-s + (−0.788 − 0.105i)14-s + (−1.38 − 0.397i)15-s + (−0.869 + 0.494i)16-s − 0.292i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 72 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.704 - 0.709i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 72 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.704 - 0.709i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.622182 + 0.259016i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.622182 + 0.259016i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.12 + 0.862i)T \) |
| 3 | \( 1 + (-0.418 - 1.68i)T \) |
good | 5 | \( 1 + (1.60 - 2.78i)T + (-2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (-1.82 + 1.05i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-3.47 + 2.00i)T + (5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (0.341 + 0.197i)T + (6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + 1.20iT - 17T^{2} \) |
| 19 | \( 1 + 1.62T + 19T^{2} \) |
| 23 | \( 1 + (-2.74 + 4.75i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-2.95 - 5.12i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-3.34 - 1.93i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + 10.8iT - 37T^{2} \) |
| 41 | \( 1 + (1.23 + 0.715i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (1.21 + 2.10i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (-0.792 - 1.37i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + 7.07T + 53T^{2} \) |
| 59 | \( 1 + (2.29 + 1.32i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (8.18 - 4.72i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (2.60 - 4.51i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 2.69T + 71T^{2} \) |
| 73 | \( 1 - 9.49T + 73T^{2} \) |
| 79 | \( 1 + (-1.53 + 0.886i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (1.30 - 0.755i)T + (41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 - 11.2iT - 89T^{2} \) |
| 97 | \( 1 + (-5.84 - 10.1i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.76995308394917264781304323831, −14.05476594723919265809422397691, −12.05301158337697153316303626418, −10.92554107906035083042504973035, −10.71377736334231792761570862817, −9.190396908295398497939537176916, −8.119380102612132859704638094277, −6.82991345986324474356725257639, −4.22135047638566990136498126202, −3.03718913967386118541571283882,
1.45928096222127515576478818258, 4.80328813773384434714049220641, 6.41350412703383057733337968514, 7.79855447360569161300075210335, 8.486589654666224307559450998802, 9.451555866011288059287021841224, 11.50974830539407792799566364488, 12.12769226139601447743213715056, 13.50027935289146691638728829602, 14.76443171591892906531114388408