L(s) = 1 | + (−0.179 + 1.40i)2-s + (0.986 + 1.42i)3-s + (−1.93 − 0.504i)4-s + (−1.19 + 0.687i)5-s + (−2.17 + 1.12i)6-s + (1.80 − 3.12i)7-s + (1.05 − 2.62i)8-s + (−1.05 + 2.80i)9-s + (−0.750 − 1.79i)10-s + (1.83 + 1.05i)11-s + (−1.19 − 3.25i)12-s + (−0.887 + 0.512i)13-s + (4.06 + 3.09i)14-s + (−2.15 − 1.01i)15-s + (3.49 + 1.95i)16-s + 0.808·17-s + ⋯ |
L(s) = 1 | + (−0.127 + 0.991i)2-s + (0.569 + 0.822i)3-s + (−0.967 − 0.252i)4-s + (−0.532 + 0.307i)5-s + (−0.887 + 0.460i)6-s + (0.682 − 1.18i)7-s + (0.373 − 0.927i)8-s + (−0.351 + 0.936i)9-s + (−0.237 − 0.567i)10-s + (0.552 + 0.319i)11-s + (−0.343 − 0.939i)12-s + (−0.246 + 0.142i)13-s + (1.08 + 0.826i)14-s + (−0.556 − 0.262i)15-s + (0.872 + 0.487i)16-s + 0.196·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 72 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.130 - 0.991i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 72 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.130 - 0.991i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.603924 + 0.688632i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.603924 + 0.688632i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.179 - 1.40i)T \) |
| 3 | \( 1 + (-0.986 - 1.42i)T \) |
good | 5 | \( 1 + (1.19 - 0.687i)T + (2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (-1.80 + 3.12i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-1.83 - 1.05i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (0.887 - 0.512i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 - 0.808T + 17T^{2} \) |
| 19 | \( 1 + 7.43iT - 19T^{2} \) |
| 23 | \( 1 + (1.65 + 2.86i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (7.71 + 4.45i)T + (14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + (-3.26 - 5.65i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 - 4.01iT - 37T^{2} \) |
| 41 | \( 1 + (3.45 + 5.99i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (0.245 + 0.142i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + (3.61 - 6.25i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 - 3.86iT - 53T^{2} \) |
| 59 | \( 1 + (-7.06 + 4.08i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-6.31 - 3.64i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (2.43 - 1.40i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 4.69T + 71T^{2} \) |
| 73 | \( 1 - 0.409T + 73T^{2} \) |
| 79 | \( 1 + (0.0456 - 0.0790i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (2.40 + 1.39i)T + (41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 - 8.91T + 89T^{2} \) |
| 97 | \( 1 + (2.76 - 4.78i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.98171010821158257131000638943, −14.21737514296421696754140492238, −13.35274119146532110058307530158, −11.35090225813189974519359573098, −10.24334137642268194022638861089, −9.107512481571810614785397136960, −7.88492660428633097179564135335, −6.98719425789938721107315552472, −4.87546041751562841196239980775, −3.90102024084730398680336707285,
1.90477263585986738383773588277, 3.68930295527200324136076743947, 5.65338999169909647334177879957, 7.88387243578902462271828246565, 8.539703991784501036174565693407, 9.687675386685760306925843625451, 11.55877124551154408946280671403, 12.01962611044808486056117478712, 12.96361828520117407246811989733, 14.25882852741799366713920528241