L(s) = 1 | + (−0.179 + 1.40i)2-s + (0.986 + 1.42i)3-s + (−1.93 − 0.504i)4-s + (−1.19 + 0.687i)5-s + (−2.17 + 1.12i)6-s + (1.80 − 3.12i)7-s + (1.05 − 2.62i)8-s + (−1.05 + 2.80i)9-s + (−0.750 − 1.79i)10-s + (1.83 + 1.05i)11-s + (−1.19 − 3.25i)12-s + (−0.887 + 0.512i)13-s + (4.06 + 3.09i)14-s + (−2.15 − 1.01i)15-s + (3.49 + 1.95i)16-s + 0.808·17-s + ⋯ |
L(s) = 1 | + (−0.127 + 0.991i)2-s + (0.569 + 0.822i)3-s + (−0.967 − 0.252i)4-s + (−0.532 + 0.307i)5-s + (−0.887 + 0.460i)6-s + (0.682 − 1.18i)7-s + (0.373 − 0.927i)8-s + (−0.351 + 0.936i)9-s + (−0.237 − 0.567i)10-s + (0.552 + 0.319i)11-s + (−0.343 − 0.939i)12-s + (−0.246 + 0.142i)13-s + (1.08 + 0.826i)14-s + (−0.556 − 0.262i)15-s + (0.872 + 0.487i)16-s + 0.196·17-s + ⋯ |
Λ(s)=(=(72s/2ΓC(s)L(s)(−0.130−0.991i)Λ(2−s)
Λ(s)=(=(72s/2ΓC(s+1/2)L(s)(−0.130−0.991i)Λ(1−s)
Degree: |
2 |
Conductor: |
72
= 23⋅32
|
Sign: |
−0.130−0.991i
|
Analytic conductor: |
0.574922 |
Root analytic conductor: |
0.758236 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ72(61,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 72, ( :1/2), −0.130−0.991i)
|
Particular Values
L(1) |
≈ |
0.603924+0.688632i |
L(21) |
≈ |
0.603924+0.688632i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.179−1.40i)T |
| 3 | 1+(−0.986−1.42i)T |
good | 5 | 1+(1.19−0.687i)T+(2.5−4.33i)T2 |
| 7 | 1+(−1.80+3.12i)T+(−3.5−6.06i)T2 |
| 11 | 1+(−1.83−1.05i)T+(5.5+9.52i)T2 |
| 13 | 1+(0.887−0.512i)T+(6.5−11.2i)T2 |
| 17 | 1−0.808T+17T2 |
| 19 | 1+7.43iT−19T2 |
| 23 | 1+(1.65+2.86i)T+(−11.5+19.9i)T2 |
| 29 | 1+(7.71+4.45i)T+(14.5+25.1i)T2 |
| 31 | 1+(−3.26−5.65i)T+(−15.5+26.8i)T2 |
| 37 | 1−4.01iT−37T2 |
| 41 | 1+(3.45+5.99i)T+(−20.5+35.5i)T2 |
| 43 | 1+(0.245+0.142i)T+(21.5+37.2i)T2 |
| 47 | 1+(3.61−6.25i)T+(−23.5−40.7i)T2 |
| 53 | 1−3.86iT−53T2 |
| 59 | 1+(−7.06+4.08i)T+(29.5−51.0i)T2 |
| 61 | 1+(−6.31−3.64i)T+(30.5+52.8i)T2 |
| 67 | 1+(2.43−1.40i)T+(33.5−58.0i)T2 |
| 71 | 1−4.69T+71T2 |
| 73 | 1−0.409T+73T2 |
| 79 | 1+(0.0456−0.0790i)T+(−39.5−68.4i)T2 |
| 83 | 1+(2.40+1.39i)T+(41.5+71.8i)T2 |
| 89 | 1−8.91T+89T2 |
| 97 | 1+(2.76−4.78i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.98171010821158257131000638943, −14.21737514296421696754140492238, −13.35274119146532110058307530158, −11.35090225813189974519359573098, −10.24334137642268194022638861089, −9.107512481571810614785397136960, −7.88492660428633097179564135335, −6.98719425789938721107315552472, −4.87546041751562841196239980775, −3.90102024084730398680336707285,
1.90477263585986738383773588277, 3.68930295527200324136076743947, 5.65338999169909647334177879957, 7.88387243578902462271828246565, 8.539703991784501036174565693407, 9.687675386685760306925843625451, 11.55877124551154408946280671403, 12.01962611044808486056117478712, 12.96361828520117407246811989733, 14.25882852741799366713920528241