L(s) = 1 | + (0.366 + 1.36i)2-s + (0.866 − 1.5i)3-s + (−1.73 + i)4-s + (1.73 − i)5-s + (2.36 + 0.633i)6-s + (−2 + 3.46i)7-s + (−2 − 1.99i)8-s + (−1.5 − 2.59i)9-s + (2 + 1.99i)10-s + (−2.59 − 1.5i)11-s + 3.46i·12-s + (−1.73 + i)13-s + (−5.46 − 1.46i)14-s − 3.46i·15-s + (1.99 − 3.46i)16-s + 5·17-s + ⋯ |
L(s) = 1 | + (0.258 + 0.965i)2-s + (0.499 − 0.866i)3-s + (−0.866 + 0.5i)4-s + (0.774 − 0.447i)5-s + (0.965 + 0.258i)6-s + (−0.755 + 1.30i)7-s + (−0.707 − 0.707i)8-s + (−0.5 − 0.866i)9-s + (0.632 + 0.632i)10-s + (−0.783 − 0.452i)11-s + 0.999i·12-s + (−0.480 + 0.277i)13-s + (−1.46 − 0.391i)14-s − 0.894i·15-s + (0.499 − 0.866i)16-s + 1.21·17-s + ⋯ |
Λ(s)=(=(72s/2ΓC(s)L(s)(0.819−0.573i)Λ(2−s)
Λ(s)=(=(72s/2ΓC(s+1/2)L(s)(0.819−0.573i)Λ(1−s)
Degree: |
2 |
Conductor: |
72
= 23⋅32
|
Sign: |
0.819−0.573i
|
Analytic conductor: |
0.574922 |
Root analytic conductor: |
0.758236 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ72(61,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 72, ( :1/2), 0.819−0.573i)
|
Particular Values
L(1) |
≈ |
1.04333+0.328961i |
L(21) |
≈ |
1.04333+0.328961i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.366−1.36i)T |
| 3 | 1+(−0.866+1.5i)T |
good | 5 | 1+(−1.73+i)T+(2.5−4.33i)T2 |
| 7 | 1+(2−3.46i)T+(−3.5−6.06i)T2 |
| 11 | 1+(2.59+1.5i)T+(5.5+9.52i)T2 |
| 13 | 1+(1.73−i)T+(6.5−11.2i)T2 |
| 17 | 1−5T+17T2 |
| 19 | 1+iT−19T2 |
| 23 | 1+(1+1.73i)T+(−11.5+19.9i)T2 |
| 29 | 1+(14.5+25.1i)T2 |
| 31 | 1+(−2−3.46i)T+(−15.5+26.8i)T2 |
| 37 | 1+2iT−37T2 |
| 41 | 1+(−2.5−4.33i)T+(−20.5+35.5i)T2 |
| 43 | 1+(−9.52−5.5i)T+(21.5+37.2i)T2 |
| 47 | 1+(−3+5.19i)T+(−23.5−40.7i)T2 |
| 53 | 1−53T2 |
| 59 | 1+(−0.866+0.5i)T+(29.5−51.0i)T2 |
| 61 | 1+(10.3+6i)T+(30.5+52.8i)T2 |
| 67 | 1+(2.59−1.5i)T+(33.5−58.0i)T2 |
| 71 | 1+6T+71T2 |
| 73 | 1−9T+73T2 |
| 79 | 1+(−7+12.1i)T+(−39.5−68.4i)T2 |
| 83 | 1+(3.46+2i)T+(41.5+71.8i)T2 |
| 89 | 1+14T+89T2 |
| 97 | 1+(0.5−0.866i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.65225774412273451644233915024, −13.70206001225455086377290891423, −12.77753997839591242264394960293, −12.18207237333949929815455512245, −9.640827493928599083202869088148, −8.864233791200871868373160028945, −7.72766623118291055585766666734, −6.24321063915552237522606768556, −5.44469430329803475229840398074, −2.87052640885778066793988540552,
2.75148535640928773077850167267, 4.08380052048807056291574053817, 5.62945459857429237262547075789, 7.69991990660725264961026418096, 9.557197029839213090619546303397, 10.13251765185218936814101371061, 10.72570299456177282736360006327, 12.49059798390126917928632934601, 13.67445576818653449017017779628, 14.13727068886058197892349261299