L(s) = 1 | + (1 − i)2-s − 2i·4-s + 2i·5-s − 2·7-s + (−2 − 2i)8-s + (2 + 2i)10-s + 4i·13-s + (−2 + 2i)14-s − 4·16-s + 2·17-s − 4i·19-s + 4·20-s − 4·23-s + 25-s + (4 + 4i)26-s + ⋯ |
L(s) = 1 | + (0.707 − 0.707i)2-s − i·4-s + 0.894i·5-s − 0.755·7-s + (−0.707 − 0.707i)8-s + (0.632 + 0.632i)10-s + 1.10i·13-s + (−0.534 + 0.534i)14-s − 16-s + 0.485·17-s − 0.917i·19-s + 0.894·20-s − 0.834·23-s + 0.200·25-s + (0.784 + 0.784i)26-s + ⋯ |
Λ(s)=(=(72s/2ΓC(s)L(s)(0.707+0.707i)Λ(2−s)
Λ(s)=(=(72s/2ΓC(s+1/2)L(s)(0.707+0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
72
= 23⋅32
|
Sign: |
0.707+0.707i
|
Analytic conductor: |
0.574922 |
Root analytic conductor: |
0.758236 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ72(37,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 72, ( :1/2), 0.707+0.707i)
|
Particular Values
L(1) |
≈ |
1.09661−0.454231i |
L(21) |
≈ |
1.09661−0.454231i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−1+i)T |
| 3 | 1 |
good | 5 | 1−2iT−5T2 |
| 7 | 1+2T+7T2 |
| 11 | 1−11T2 |
| 13 | 1−4iT−13T2 |
| 17 | 1−2T+17T2 |
| 19 | 1+4iT−19T2 |
| 23 | 1+4T+23T2 |
| 29 | 1+6iT−29T2 |
| 31 | 1−2T+31T2 |
| 37 | 1+8iT−37T2 |
| 41 | 1+2T+41T2 |
| 43 | 1−4iT−43T2 |
| 47 | 1−12T+47T2 |
| 53 | 1−6iT−53T2 |
| 59 | 1−4iT−59T2 |
| 61 | 1−61T2 |
| 67 | 1−12iT−67T2 |
| 71 | 1+12T+71T2 |
| 73 | 1+6T+73T2 |
| 79 | 1−10T+79T2 |
| 83 | 1−16iT−83T2 |
| 89 | 1−10T+89T2 |
| 97 | 1+2T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.27967789830314087067313413679, −13.50751769492664210204676631508, −12.27510916837260584493795738950, −11.29820456022791443126402878567, −10.24089300325458465964867268631, −9.232706728984305294883789634900, −7.04757015115889787904429590464, −5.99689698164512799731262664257, −4.13547310437713837033869561692, −2.65049428307336927197666154875,
3.42160512196739537031611417666, 5.05733945414218989480480092363, 6.19224423072169904665005262741, 7.73033600871715252944656625446, 8.780433665194772995003156464804, 10.22129357345684336042357840687, 12.08350832093766156717979241911, 12.70063404200723784944113138791, 13.63584948772805157440499549654, 14.82928336017101520461775056403