L(s) = 1 | + i·5-s − 2.44i·7-s + 1.01·11-s + 2.24·13-s − 4.89i·19-s + 8.36·23-s − 25-s + 6i·29-s − 8.36i·31-s + 2.44·35-s + 6.24·37-s − 4.24i·41-s + 2.02i·43-s + 2.02·47-s + 1.00·49-s + ⋯ |
L(s) = 1 | + 0.447i·5-s − 0.925i·7-s + 0.305·11-s + 0.621·13-s − 1.12i·19-s + 1.74·23-s − 0.200·25-s + 1.11i·29-s − 1.50i·31-s + 0.414·35-s + 1.02·37-s − 0.662i·41-s + 0.309i·43-s + 0.295·47-s + 0.142·49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.908 + 0.418i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.908 + 0.418i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.54572 - 0.338938i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.54572 - 0.338938i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 - iT \) |
good | 7 | \( 1 + 2.44iT - 7T^{2} \) |
| 11 | \( 1 - 1.01T + 11T^{2} \) |
| 13 | \( 1 - 2.24T + 13T^{2} \) |
| 17 | \( 1 - 17T^{2} \) |
| 19 | \( 1 + 4.89iT - 19T^{2} \) |
| 23 | \( 1 - 8.36T + 23T^{2} \) |
| 29 | \( 1 - 6iT - 29T^{2} \) |
| 31 | \( 1 + 8.36iT - 31T^{2} \) |
| 37 | \( 1 - 6.24T + 37T^{2} \) |
| 41 | \( 1 + 4.24iT - 41T^{2} \) |
| 43 | \( 1 - 2.02iT - 43T^{2} \) |
| 47 | \( 1 - 2.02T + 47T^{2} \) |
| 53 | \( 1 - 8.48iT - 53T^{2} \) |
| 59 | \( 1 - 1.01T + 59T^{2} \) |
| 61 | \( 1 - 10.4T + 61T^{2} \) |
| 67 | \( 1 + 6.92iT - 67T^{2} \) |
| 71 | \( 1 + 16.7T + 71T^{2} \) |
| 73 | \( 1 + 10.4T + 73T^{2} \) |
| 79 | \( 1 - 1.43iT - 79T^{2} \) |
| 83 | \( 1 - 14.6T + 83T^{2} \) |
| 89 | \( 1 + 16.2iT - 89T^{2} \) |
| 97 | \( 1 + 10.4T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.58812980962776324624941618982, −9.439513739472631557395142025296, −8.764450433236366568056123614803, −7.51027115877549108812184157406, −6.98417280033062557678712197917, −6.02186851934369151465569644199, −4.78163027858524735775450701035, −3.81636202579495158307288271459, −2.72890949294957783229402982749, −1.00423757121279502645808722582,
1.34165371829922862573828152666, 2.78108122967851963611020403467, 3.98842033100398822546677967259, 5.15591850740938845957574680437, 5.92758402624858672098544124856, 6.89139579245175736581869844145, 8.104291459996337988979381658267, 8.751034990229691141283642687529, 9.471484555923468578053859663668, 10.44480794756651946616390514537