L(s) = 1 | + (4 + 3i)5-s − 24i·13-s − 30i·17-s + (7 + 24i)25-s + 40·29-s + 24i·37-s + 80·41-s − 49·49-s − 90i·53-s + 22·61-s + (72 − 96i)65-s + 96i·73-s + (90 − 120i)85-s + 160·89-s − 144i·97-s + ⋯ |
L(s) = 1 | + (0.800 + 0.600i)5-s − 1.84i·13-s − 1.76i·17-s + (0.280 + 0.959i)25-s + 1.37·29-s + 0.648i·37-s + 1.95·41-s − 0.999·49-s − 1.69i·53-s + 0.360·61-s + (1.10 − 1.47i)65-s + 1.31i·73-s + (1.05 − 1.41i)85-s + 1.79·89-s − 1.48i·97-s + ⋯ |
Λ(s)=(=(720s/2ΓC(s)L(s)(0.799+0.599i)Λ(3−s)
Λ(s)=(=(720s/2ΓC(s+1)L(s)(0.799+0.599i)Λ(1−s)
Degree: |
2 |
Conductor: |
720
= 24⋅32⋅5
|
Sign: |
0.799+0.599i
|
Analytic conductor: |
19.6185 |
Root analytic conductor: |
4.42928 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ720(559,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 720, ( :1), 0.799+0.599i)
|
Particular Values
L(23) |
≈ |
2.062605578 |
L(21) |
≈ |
2.062605578 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(−4−3i)T |
good | 7 | 1+49T2 |
| 11 | 1−121T2 |
| 13 | 1+24iT−169T2 |
| 17 | 1+30iT−289T2 |
| 19 | 1−361T2 |
| 23 | 1+529T2 |
| 29 | 1−40T+841T2 |
| 31 | 1−961T2 |
| 37 | 1−24iT−1.36e3T2 |
| 41 | 1−80T+1.68e3T2 |
| 43 | 1+1.84e3T2 |
| 47 | 1+2.20e3T2 |
| 53 | 1+90iT−2.80e3T2 |
| 59 | 1−3.48e3T2 |
| 61 | 1−22T+3.72e3T2 |
| 67 | 1+4.48e3T2 |
| 71 | 1−5.04e3T2 |
| 73 | 1−96iT−5.32e3T2 |
| 79 | 1−6.24e3T2 |
| 83 | 1+6.88e3T2 |
| 89 | 1−160T+7.92e3T2 |
| 97 | 1+144iT−9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.06209609593778240058757712816, −9.509845417310531378175017399470, −8.352699868080623691552539794036, −7.46890873056342618583782140776, −6.57926182402594870502176612674, −5.61980897062721922562137901515, −4.85989479768828035598562976539, −3.20685489441831752310022918616, −2.53831365851164639560552336411, −0.797299987566476688261041837917,
1.33381644013624857409242843241, 2.31722429720029262513114357722, 3.99152190107949918441622133530, 4.74682511606462404615535684663, 6.02747037150496146758744486226, 6.50604283296682602516088397348, 7.79384236081318026139011622890, 8.807950454077778297592798289202, 9.291737438529966952632907849883, 10.25897143868498582204806844618