L(s) = 1 | + 5·5-s + 6.92·7-s − 13.8i·11-s − 24i·13-s + 24i·17-s − 27.7i·19-s − 34.6·23-s + 25·25-s − 10·29-s − 13.8i·31-s + 34.6·35-s + 24i·37-s + 34·41-s + 20.7·43-s − 6.92·47-s + ⋯ |
L(s) = 1 | + 5-s + 0.989·7-s − 1.25i·11-s − 1.84i·13-s + 1.41i·17-s − 1.45i·19-s − 1.50·23-s + 25-s − 0.344·29-s − 0.446i·31-s + 0.989·35-s + 0.648i·37-s + 0.829·41-s + 0.483·43-s − 0.147·47-s + ⋯ |
Λ(s)=(=(720s/2ΓC(s)L(s)(0.5+0.866i)Λ(3−s)
Λ(s)=(=(720s/2ΓC(s+1)L(s)(0.5+0.866i)Λ(1−s)
Degree: |
2 |
Conductor: |
720
= 24⋅32⋅5
|
Sign: |
0.5+0.866i
|
Analytic conductor: |
19.6185 |
Root analytic conductor: |
4.42928 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ720(559,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 720, ( :1), 0.5+0.866i)
|
Particular Values
L(23) |
≈ |
2.327904584 |
L(21) |
≈ |
2.327904584 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1−5T |
good | 7 | 1−6.92T+49T2 |
| 11 | 1+13.8iT−121T2 |
| 13 | 1+24iT−169T2 |
| 17 | 1−24iT−289T2 |
| 19 | 1+27.7iT−361T2 |
| 23 | 1+34.6T+529T2 |
| 29 | 1+10T+841T2 |
| 31 | 1+13.8iT−961T2 |
| 37 | 1−24iT−1.36e3T2 |
| 41 | 1−34T+1.68e3T2 |
| 43 | 1−20.7T+1.84e3T2 |
| 47 | 1+6.92T+2.20e3T2 |
| 53 | 1−48iT−2.80e3T2 |
| 59 | 1+13.8iT−3.48e3T2 |
| 61 | 1−70T+3.72e3T2 |
| 67 | 1+90.0T+4.48e3T2 |
| 71 | 1+55.4iT−5.04e3T2 |
| 73 | 1+48iT−5.32e3T2 |
| 79 | 1+41.5iT−6.24e3T2 |
| 83 | 1−90.0T+6.88e3T2 |
| 89 | 1−14T+7.92e3T2 |
| 97 | 1−96iT−9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.31527281922936358209801944700, −9.122213539388492099825270098590, −8.305485871304281729564396758096, −7.71287702929072176432967726138, −6.15654455347882590867478682176, −5.75341672568722120469444311567, −4.73782485484767712413829166694, −3.34016834057295409023454527215, −2.18328405311313213166555257278, −0.835694250791680051347260399380,
1.66023917571681579179405076384, 2.20279777068237032636777196745, 4.09714730759728576549701523702, 4.86859941825498010978045105326, 5.86112292722128189501304316846, 6.89199608667027130683765194133, 7.64588040757718390205406262999, 8.788186468099153119674933020469, 9.623753923130955082304654617270, 10.09484095183783481428174532734