L(s) = 1 | + (2 − 4.58i)5-s + 3.46·7-s − 15.8i·11-s − 9.16i·13-s − 9.16i·17-s + 31.7i·19-s − 27.7·23-s + (−17 − 18.3i)25-s + 8·29-s + (6.92 − 15.8i)35-s − 45.8i·37-s − 50·41-s + 62.3·43-s + 48.4·47-s − 37·49-s + ⋯ |
L(s) = 1 | + (0.400 − 0.916i)5-s + 0.494·7-s − 1.44i·11-s − 0.705i·13-s − 0.539i·17-s + 1.67i·19-s − 1.20·23-s + (−0.680 − 0.733i)25-s + 0.275·29-s + (0.197 − 0.453i)35-s − 1.23i·37-s − 1.21·41-s + 1.45·43-s + 1.03·47-s − 0.755·49-s + ⋯ |
Λ(s)=(=(720s/2ΓC(s)L(s)(−0.399+0.916i)Λ(3−s)
Λ(s)=(=(720s/2ΓC(s+1)L(s)(−0.399+0.916i)Λ(1−s)
Degree: |
2 |
Conductor: |
720
= 24⋅32⋅5
|
Sign: |
−0.399+0.916i
|
Analytic conductor: |
19.6185 |
Root analytic conductor: |
4.42928 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ720(559,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 720, ( :1), −0.399+0.916i)
|
Particular Values
L(23) |
≈ |
1.671706077 |
L(21) |
≈ |
1.671706077 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(−2+4.58i)T |
good | 7 | 1−3.46T+49T2 |
| 11 | 1+15.8iT−121T2 |
| 13 | 1+9.16iT−169T2 |
| 17 | 1+9.16iT−289T2 |
| 19 | 1−31.7iT−361T2 |
| 23 | 1+27.7T+529T2 |
| 29 | 1−8T+841T2 |
| 31 | 1−961T2 |
| 37 | 1+45.8iT−1.36e3T2 |
| 41 | 1+50T+1.68e3T2 |
| 43 | 1−62.3T+1.84e3T2 |
| 47 | 1−48.4T+2.20e3T2 |
| 53 | 1+27.4iT−2.80e3T2 |
| 59 | 1−15.8iT−3.48e3T2 |
| 61 | 1+26T+3.72e3T2 |
| 67 | 1+55.4T+4.48e3T2 |
| 71 | 1−95.2iT−5.04e3T2 |
| 73 | 1+128.iT−5.32e3T2 |
| 79 | 1+126.iT−6.24e3T2 |
| 83 | 1+131.T+6.88e3T2 |
| 89 | 1−86T+7.92e3T2 |
| 97 | 1+109.iT−9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.984983273489167289034549536783, −8.933195466043008725147376520206, −8.281605107383823189200707826579, −7.60443320646196760613427460405, −5.91701893899739685741103807724, −5.70167509585815542325247477659, −4.45390018446144366138502426902, −3.35559592860417335864960092190, −1.85136119243904226762972696511, −0.57535073069386502771676904811,
1.74411503909008007444689376533, 2.63900405355367211950264698925, 4.11122302901558982019052664272, 4.95540754247163696830167759984, 6.23713520733827214269704918690, 6.96463973678336517234389521577, 7.70302430309216305955090543030, 8.872181714388723811909978852215, 9.754738066679740224949796441472, 10.39790646529618695443765712504