L(s) = 1 | + (2 − 4.58i)5-s + 3.46·7-s − 15.8i·11-s − 9.16i·13-s − 9.16i·17-s + 31.7i·19-s − 27.7·23-s + (−17 − 18.3i)25-s + 8·29-s + (6.92 − 15.8i)35-s − 45.8i·37-s − 50·41-s + 62.3·43-s + 48.4·47-s − 37·49-s + ⋯ |
L(s) = 1 | + (0.400 − 0.916i)5-s + 0.494·7-s − 1.44i·11-s − 0.705i·13-s − 0.539i·17-s + 1.67i·19-s − 1.20·23-s + (−0.680 − 0.733i)25-s + 0.275·29-s + (0.197 − 0.453i)35-s − 1.23i·37-s − 1.21·41-s + 1.45·43-s + 1.03·47-s − 0.755·49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.399 + 0.916i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.399 + 0.916i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.671706077\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.671706077\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-2 + 4.58i)T \) |
good | 7 | \( 1 - 3.46T + 49T^{2} \) |
| 11 | \( 1 + 15.8iT - 121T^{2} \) |
| 13 | \( 1 + 9.16iT - 169T^{2} \) |
| 17 | \( 1 + 9.16iT - 289T^{2} \) |
| 19 | \( 1 - 31.7iT - 361T^{2} \) |
| 23 | \( 1 + 27.7T + 529T^{2} \) |
| 29 | \( 1 - 8T + 841T^{2} \) |
| 31 | \( 1 - 961T^{2} \) |
| 37 | \( 1 + 45.8iT - 1.36e3T^{2} \) |
| 41 | \( 1 + 50T + 1.68e3T^{2} \) |
| 43 | \( 1 - 62.3T + 1.84e3T^{2} \) |
| 47 | \( 1 - 48.4T + 2.20e3T^{2} \) |
| 53 | \( 1 + 27.4iT - 2.80e3T^{2} \) |
| 59 | \( 1 - 15.8iT - 3.48e3T^{2} \) |
| 61 | \( 1 + 26T + 3.72e3T^{2} \) |
| 67 | \( 1 + 55.4T + 4.48e3T^{2} \) |
| 71 | \( 1 - 95.2iT - 5.04e3T^{2} \) |
| 73 | \( 1 + 128. iT - 5.32e3T^{2} \) |
| 79 | \( 1 + 126. iT - 6.24e3T^{2} \) |
| 83 | \( 1 + 131.T + 6.88e3T^{2} \) |
| 89 | \( 1 - 86T + 7.92e3T^{2} \) |
| 97 | \( 1 + 109. iT - 9.40e3T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.984983273489167289034549536783, −8.933195466043008725147376520206, −8.281605107383823189200707826579, −7.60443320646196760613427460405, −5.91701893899739685741103807724, −5.70167509585815542325247477659, −4.45390018446144366138502426902, −3.35559592860417335864960092190, −1.85136119243904226762972696511, −0.57535073069386502771676904811,
1.74411503909008007444689376533, 2.63900405355367211950264698925, 4.11122302901558982019052664272, 4.95540754247163696830167759984, 6.23713520733827214269704918690, 6.96463973678336517234389521577, 7.70302430309216305955090543030, 8.872181714388723811909978852215, 9.754738066679740224949796441472, 10.39790646529618695443765712504