L(s) = 1 | + (−4 + 3i)5-s + 3.46·7-s − 3.46i·11-s − 6i·13-s + 18i·17-s + 13.8i·19-s − 6.92·23-s + (7 − 24i)25-s − 28·29-s + 48.4i·31-s + (−13.8 + 10.3i)35-s − 30i·37-s − 2·41-s − 62.3·43-s − 55.4·47-s + ⋯ |
L(s) = 1 | + (−0.800 + 0.600i)5-s + 0.494·7-s − 0.314i·11-s − 0.461i·13-s + 1.05i·17-s + 0.729i·19-s − 0.301·23-s + (0.280 − 0.959i)25-s − 0.965·29-s + 1.56i·31-s + (−0.395 + 0.296i)35-s − 0.810i·37-s − 0.0487·41-s − 1.45·43-s − 1.17·47-s + ⋯ |
Λ(s)=(=(720s/2ΓC(s)L(s)(−0.919−0.392i)Λ(3−s)
Λ(s)=(=(720s/2ΓC(s+1)L(s)(−0.919−0.392i)Λ(1−s)
Degree: |
2 |
Conductor: |
720
= 24⋅32⋅5
|
Sign: |
−0.919−0.392i
|
Analytic conductor: |
19.6185 |
Root analytic conductor: |
4.42928 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ720(559,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 720, ( :1), −0.919−0.392i)
|
Particular Values
L(23) |
≈ |
0.5646994018 |
L(21) |
≈ |
0.5646994018 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(4−3i)T |
good | 7 | 1−3.46T+49T2 |
| 11 | 1+3.46iT−121T2 |
| 13 | 1+6iT−169T2 |
| 17 | 1−18iT−289T2 |
| 19 | 1−13.8iT−361T2 |
| 23 | 1+6.92T+529T2 |
| 29 | 1+28T+841T2 |
| 31 | 1−48.4iT−961T2 |
| 37 | 1+30iT−1.36e3T2 |
| 41 | 1+2T+1.68e3T2 |
| 43 | 1+62.3T+1.84e3T2 |
| 47 | 1+55.4T+2.20e3T2 |
| 53 | 1+102iT−2.80e3T2 |
| 59 | 1−100.iT−3.48e3T2 |
| 61 | 1+74T+3.72e3T2 |
| 67 | 1+96.9T+4.48e3T2 |
| 71 | 1−6.92iT−5.04e3T2 |
| 73 | 1−132iT−5.32e3T2 |
| 79 | 1−103.iT−6.24e3T2 |
| 83 | 1−117.T+6.88e3T2 |
| 89 | 1−14T+7.92e3T2 |
| 97 | 1+24iT−9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.65937747791654854796476766206, −9.934651375807434083794516905082, −8.549536670829549629125088396510, −8.097956461286962583103898298221, −7.17423019244942965620876426103, −6.21642031527777616489226316335, −5.17510636622496800536972186639, −3.96648652867301586078960601706, −3.18838228490656428972233363266, −1.65088139158424637742698326513,
0.19628945531262993470294254129, 1.74212986364623220156922886584, 3.24086455862927495421069637014, 4.49187887872670521108278987146, 4.98638146677466146881120208418, 6.33619822856741552008586386142, 7.44880672766954705033482671495, 7.973049587284638204204255670356, 9.056837631158755050813217789726, 9.606396380395079037075115522952