Properties

Label 2-720-20.7-c1-0-5
Degree 22
Conductor 720720
Sign 0.5250.850i0.525 - 0.850i
Analytic cond. 5.749225.74922
Root an. cond. 2.397752.39775
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1 + 2i)5-s + (1 − i)13-s + (5 + 5i)17-s + (−3 + 4i)25-s + 10i·29-s + (−7 − 7i)37-s + 10·41-s + 7i·49-s + (−5 + 5i)53-s + 12·61-s + (3 + i)65-s + (11 − 11i)73-s + (−5 + 15i)85-s − 10i·89-s + (−13 − 13i)97-s + ⋯
L(s)  = 1  + (0.447 + 0.894i)5-s + (0.277 − 0.277i)13-s + (1.21 + 1.21i)17-s + (−0.600 + 0.800i)25-s + 1.85i·29-s + (−1.15 − 1.15i)37-s + 1.56·41-s + i·49-s + (−0.686 + 0.686i)53-s + 1.53·61-s + (0.372 + 0.124i)65-s + (1.28 − 1.28i)73-s + (−0.542 + 1.62i)85-s − 1.05i·89-s + (−1.31 − 1.31i)97-s + ⋯

Functional equation

Λ(s)=(720s/2ΓC(s)L(s)=((0.5250.850i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.525 - 0.850i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(720s/2ΓC(s+1/2)L(s)=((0.5250.850i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.525 - 0.850i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 720720    =    243252^{4} \cdot 3^{2} \cdot 5
Sign: 0.5250.850i0.525 - 0.850i
Analytic conductor: 5.749225.74922
Root analytic conductor: 2.397752.39775
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ720(127,)\chi_{720} (127, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 720, ( :1/2), 0.5250.850i)(2,\ 720,\ (\ :1/2),\ 0.525 - 0.850i)

Particular Values

L(1)L(1) \approx 1.42303+0.793392i1.42303 + 0.793392i
L(12)L(\frac12) \approx 1.42303+0.793392i1.42303 + 0.793392i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
5 1+(12i)T 1 + (-1 - 2i)T
good7 17iT2 1 - 7iT^{2}
11 111T2 1 - 11T^{2}
13 1+(1+i)T13iT2 1 + (-1 + i)T - 13iT^{2}
17 1+(55i)T+17iT2 1 + (-5 - 5i)T + 17iT^{2}
19 1+19T2 1 + 19T^{2}
23 1+23iT2 1 + 23iT^{2}
29 110iT29T2 1 - 10iT - 29T^{2}
31 131T2 1 - 31T^{2}
37 1+(7+7i)T+37iT2 1 + (7 + 7i)T + 37iT^{2}
41 110T+41T2 1 - 10T + 41T^{2}
43 1+43iT2 1 + 43iT^{2}
47 147iT2 1 - 47iT^{2}
53 1+(55i)T53iT2 1 + (5 - 5i)T - 53iT^{2}
59 1+59T2 1 + 59T^{2}
61 112T+61T2 1 - 12T + 61T^{2}
67 167iT2 1 - 67iT^{2}
71 171T2 1 - 71T^{2}
73 1+(11+11i)T73iT2 1 + (-11 + 11i)T - 73iT^{2}
79 1+79T2 1 + 79T^{2}
83 1+83iT2 1 + 83iT^{2}
89 1+10iT89T2 1 + 10iT - 89T^{2}
97 1+(13+13i)T+97iT2 1 + (13 + 13i)T + 97iT^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.66662421035005122413665592620, −9.813040406290643222927654857079, −8.892777616076392053113395387391, −7.86095739511536240670876666551, −7.05712736452429743387604982721, −6.06599255800950452550590219230, −5.37953566580412955310819941787, −3.85724090966648733626557431643, −2.98570042786697898155467027824, −1.58826915175872574550972198792, 0.935267726284866606307417625882, 2.38768127530993581969491773566, 3.80709863824822138295433709877, 4.93054464557888470245271706652, 5.66122178961127731544996289487, 6.69874058099085780973968331031, 7.82855208493149221467800522786, 8.538180891490929448922770681746, 9.629131391752696114180756406965, 9.898988187197046592924298763821

Graph of the ZZ-function along the critical line