Properties

Label 2-720-45.23-c1-0-10
Degree 22
Conductor 720720
Sign 0.3480.937i0.348 - 0.937i
Analytic cond. 5.749225.74922
Root an. cond. 2.397752.39775
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−1.10 + 1.33i)3-s + (0.792 + 2.09i)5-s + (1.05 + 0.283i)7-s + (−0.548 − 2.94i)9-s + (5.44 − 3.14i)11-s + (3.34 − 0.896i)13-s + (−3.66 − 1.25i)15-s + (3.14 + 3.14i)17-s + 1.55i·19-s + (−1.55 + 1.09i)21-s + (−0.258 − 0.965i)23-s + (−3.74 + 3.31i)25-s + (4.53 + 2.53i)27-s + (−1.57 − 2.72i)29-s + (−2.22 + 3.85i)31-s + ⋯
L(s)  = 1  + (−0.639 + 0.769i)3-s + (0.354 + 0.935i)5-s + (0.400 + 0.107i)7-s + (−0.182 − 0.983i)9-s + (1.64 − 0.948i)11-s + (0.928 − 0.248i)13-s + (−0.945 − 0.325i)15-s + (0.763 + 0.763i)17-s + 0.355i·19-s + (−0.338 + 0.239i)21-s + (−0.0539 − 0.201i)23-s + (−0.748 + 0.663i)25-s + (0.872 + 0.487i)27-s + (−0.292 − 0.505i)29-s + (−0.399 + 0.692i)31-s + ⋯

Functional equation

Λ(s)=(720s/2ΓC(s)L(s)=((0.3480.937i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.348 - 0.937i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(720s/2ΓC(s+1/2)L(s)=((0.3480.937i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.348 - 0.937i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 720720    =    243252^{4} \cdot 3^{2} \cdot 5
Sign: 0.3480.937i0.348 - 0.937i
Analytic conductor: 5.749225.74922
Root analytic conductor: 2.397752.39775
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ720(113,)\chi_{720} (113, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 720, ( :1/2), 0.3480.937i)(2,\ 720,\ (\ :1/2),\ 0.348 - 0.937i)

Particular Values

L(1)L(1) \approx 1.25455+0.871609i1.25455 + 0.871609i
L(12)L(\frac12) \approx 1.25455+0.871609i1.25455 + 0.871609i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1+(1.101.33i)T 1 + (1.10 - 1.33i)T
5 1+(0.7922.09i)T 1 + (-0.792 - 2.09i)T
good7 1+(1.050.283i)T+(6.06+3.5i)T2 1 + (-1.05 - 0.283i)T + (6.06 + 3.5i)T^{2}
11 1+(5.44+3.14i)T+(5.59.52i)T2 1 + (-5.44 + 3.14i)T + (5.5 - 9.52i)T^{2}
13 1+(3.34+0.896i)T+(11.26.5i)T2 1 + (-3.34 + 0.896i)T + (11.2 - 6.5i)T^{2}
17 1+(3.143.14i)T+17iT2 1 + (-3.14 - 3.14i)T + 17iT^{2}
19 11.55iT19T2 1 - 1.55iT - 19T^{2}
23 1+(0.258+0.965i)T+(19.9+11.5i)T2 1 + (0.258 + 0.965i)T + (-19.9 + 11.5i)T^{2}
29 1+(1.57+2.72i)T+(14.5+25.1i)T2 1 + (1.57 + 2.72i)T + (-14.5 + 25.1i)T^{2}
31 1+(2.223.85i)T+(15.526.8i)T2 1 + (2.22 - 3.85i)T + (-15.5 - 26.8i)T^{2}
37 1+(33i)T37iT2 1 + (3 - 3i)T - 37iT^{2}
41 1+(3.39+1.96i)T+(20.5+35.5i)T2 1 + (3.39 + 1.96i)T + (20.5 + 35.5i)T^{2}
43 1+(0.8963.34i)T+(37.221.5i)T2 1 + (0.896 - 3.34i)T + (-37.2 - 21.5i)T^{2}
47 1+(2.328.69i)T+(40.723.5i)T2 1 + (2.32 - 8.69i)T + (-40.7 - 23.5i)T^{2}
53 1+(6.61+6.61i)T53iT2 1 + (-6.61 + 6.61i)T - 53iT^{2}
59 1+(5.90+10.2i)T+(29.551.0i)T2 1 + (-5.90 + 10.2i)T + (-29.5 - 51.0i)T^{2}
61 1+(2.724.71i)T+(30.5+52.8i)T2 1 + (-2.72 - 4.71i)T + (-30.5 + 52.8i)T^{2}
67 1+(0.978+3.65i)T+(58.0+33.5i)T2 1 + (0.978 + 3.65i)T + (-58.0 + 33.5i)T^{2}
71 10.635iT71T2 1 - 0.635iT - 71T^{2}
73 1+(2.892.89i)T+73iT2 1 + (-2.89 - 2.89i)T + 73iT^{2}
79 1+(2.121.22i)T+(39.568.4i)T2 1 + (2.12 - 1.22i)T + (39.5 - 68.4i)T^{2}
83 1+(0.5310.142i)T+(71.8+41.5i)T2 1 + (-0.531 - 0.142i)T + (71.8 + 41.5i)T^{2}
89 1+2.36T+89T2 1 + 2.36T + 89T^{2}
97 1+(10.72.89i)T+(84.0+48.5i)T2 1 + (-10.7 - 2.89i)T + (84.0 + 48.5i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.60595857366989085188840666337, −9.906573231578370639008988589306, −8.975361609142908143903474006617, −8.153022016405837514825485963616, −6.65442490233123946395454229886, −6.18054489515975045897298305336, −5.35570501066652036097349244571, −3.85920943645874940210307653602, −3.38560982027414113342567854533, −1.40001341998620602543489607870, 1.08388334578722462950625355891, 1.90167968012703380951272818188, 3.91931703893039862341005045040, 4.92793852246534286196181039502, 5.77212304504437341149225672687, 6.74109468099192778747557768988, 7.48050480391426009165806767622, 8.601245977567894423327363144588, 9.272493941762794124561985412105, 10.23084538520184278275259126385

Graph of the ZZ-function along the critical line