L(s) = 1 | + (−1.10 + 1.33i)3-s + (0.792 + 2.09i)5-s + (1.05 + 0.283i)7-s + (−0.548 − 2.94i)9-s + (5.44 − 3.14i)11-s + (3.34 − 0.896i)13-s + (−3.66 − 1.25i)15-s + (3.14 + 3.14i)17-s + 1.55i·19-s + (−1.55 + 1.09i)21-s + (−0.258 − 0.965i)23-s + (−3.74 + 3.31i)25-s + (4.53 + 2.53i)27-s + (−1.57 − 2.72i)29-s + (−2.22 + 3.85i)31-s + ⋯ |
L(s) = 1 | + (−0.639 + 0.769i)3-s + (0.354 + 0.935i)5-s + (0.400 + 0.107i)7-s + (−0.182 − 0.983i)9-s + (1.64 − 0.948i)11-s + (0.928 − 0.248i)13-s + (−0.945 − 0.325i)15-s + (0.763 + 0.763i)17-s + 0.355i·19-s + (−0.338 + 0.239i)21-s + (−0.0539 − 0.201i)23-s + (−0.748 + 0.663i)25-s + (0.872 + 0.487i)27-s + (−0.292 − 0.505i)29-s + (−0.399 + 0.692i)31-s + ⋯ |
Λ(s)=(=(720s/2ΓC(s)L(s)(0.348−0.937i)Λ(2−s)
Λ(s)=(=(720s/2ΓC(s+1/2)L(s)(0.348−0.937i)Λ(1−s)
Degree: |
2 |
Conductor: |
720
= 24⋅32⋅5
|
Sign: |
0.348−0.937i
|
Analytic conductor: |
5.74922 |
Root analytic conductor: |
2.39775 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ720(113,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 720, ( :1/2), 0.348−0.937i)
|
Particular Values
L(1) |
≈ |
1.25455+0.871609i |
L(21) |
≈ |
1.25455+0.871609i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(1.10−1.33i)T |
| 5 | 1+(−0.792−2.09i)T |
good | 7 | 1+(−1.05−0.283i)T+(6.06+3.5i)T2 |
| 11 | 1+(−5.44+3.14i)T+(5.5−9.52i)T2 |
| 13 | 1+(−3.34+0.896i)T+(11.2−6.5i)T2 |
| 17 | 1+(−3.14−3.14i)T+17iT2 |
| 19 | 1−1.55iT−19T2 |
| 23 | 1+(0.258+0.965i)T+(−19.9+11.5i)T2 |
| 29 | 1+(1.57+2.72i)T+(−14.5+25.1i)T2 |
| 31 | 1+(2.22−3.85i)T+(−15.5−26.8i)T2 |
| 37 | 1+(3−3i)T−37iT2 |
| 41 | 1+(3.39+1.96i)T+(20.5+35.5i)T2 |
| 43 | 1+(0.896−3.34i)T+(−37.2−21.5i)T2 |
| 47 | 1+(2.32−8.69i)T+(−40.7−23.5i)T2 |
| 53 | 1+(−6.61+6.61i)T−53iT2 |
| 59 | 1+(−5.90+10.2i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−2.72−4.71i)T+(−30.5+52.8i)T2 |
| 67 | 1+(0.978+3.65i)T+(−58.0+33.5i)T2 |
| 71 | 1−0.635iT−71T2 |
| 73 | 1+(−2.89−2.89i)T+73iT2 |
| 79 | 1+(2.12−1.22i)T+(39.5−68.4i)T2 |
| 83 | 1+(−0.531−0.142i)T+(71.8+41.5i)T2 |
| 89 | 1+2.36T+89T2 |
| 97 | 1+(−10.7−2.89i)T+(84.0+48.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.60595857366989085188840666337, −9.906573231578370639008988589306, −8.975361609142908143903474006617, −8.153022016405837514825485963616, −6.65442490233123946395454229886, −6.18054489515975045897298305336, −5.35570501066652036097349244571, −3.85920943645874940210307653602, −3.38560982027414113342567854533, −1.40001341998620602543489607870,
1.08388334578722462950625355891, 1.90167968012703380951272818188, 3.91931703893039862341005045040, 4.92793852246534286196181039502, 5.77212304504437341149225672687, 6.74109468099192778747557768988, 7.48050480391426009165806767622, 8.601245977567894423327363144588, 9.272493941762794124561985412105, 10.23084538520184278275259126385