Properties

Label 2-720-60.23-c0-0-0
Degree $2$
Conductor $720$
Sign $0.662 - 0.749i$
Analytic cond. $0.359326$
Root an. cond. $0.599438$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.707 + 0.707i)5-s + (1 + i)13-s + (1.41 + 1.41i)17-s − 1.00i·25-s − 1.41·29-s + (−1 + i)37-s − 1.41i·41-s i·49-s + (1.41 − 1.41i)53-s − 1.41·65-s + (−1 − i)73-s − 2.00·85-s + 1.41·89-s + (−1 + i)97-s − 1.41i·101-s + ⋯
L(s)  = 1  + (−0.707 + 0.707i)5-s + (1 + i)13-s + (1.41 + 1.41i)17-s − 1.00i·25-s − 1.41·29-s + (−1 + i)37-s − 1.41i·41-s i·49-s + (1.41 − 1.41i)53-s − 1.41·65-s + (−1 − i)73-s − 2.00·85-s + 1.41·89-s + (−1 + i)97-s − 1.41i·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.662 - 0.749i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 720 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.662 - 0.749i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(720\)    =    \(2^{4} \cdot 3^{2} \cdot 5\)
Sign: $0.662 - 0.749i$
Analytic conductor: \(0.359326\)
Root analytic conductor: \(0.599438\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{720} (143, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 720,\ (\ :0),\ 0.662 - 0.749i)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.8744477239\)
\(L(\frac12)\) \(\approx\) \(0.8744477239\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + (0.707 - 0.707i)T \)
good7 \( 1 + iT^{2} \)
11 \( 1 + T^{2} \)
13 \( 1 + (-1 - i)T + iT^{2} \)
17 \( 1 + (-1.41 - 1.41i)T + iT^{2} \)
19 \( 1 + T^{2} \)
23 \( 1 + iT^{2} \)
29 \( 1 + 1.41T + T^{2} \)
31 \( 1 - T^{2} \)
37 \( 1 + (1 - i)T - iT^{2} \)
41 \( 1 + 1.41iT - T^{2} \)
43 \( 1 - iT^{2} \)
47 \( 1 - iT^{2} \)
53 \( 1 + (-1.41 + 1.41i)T - iT^{2} \)
59 \( 1 - T^{2} \)
61 \( 1 + T^{2} \)
67 \( 1 + iT^{2} \)
71 \( 1 + T^{2} \)
73 \( 1 + (1 + i)T + iT^{2} \)
79 \( 1 + T^{2} \)
83 \( 1 + iT^{2} \)
89 \( 1 - 1.41T + T^{2} \)
97 \( 1 + (1 - i)T - iT^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.69586414033327449488954340451, −10.09526613516142092490867168529, −8.875895662919085980133728579828, −8.158999394857400877990101158500, −7.24121539184512390265557339016, −6.41368655815196284656496659776, −5.46105895518190051972033628609, −3.94681818133471158596379612285, −3.48464899534862767580549396055, −1.79867177698340179480444143221, 1.09226915015899176819216067128, 3.04288437003052259917622483598, 3.95107740013189464419388771609, 5.17495173136970089075037723889, 5.82121470846177135671677441346, 7.31779022604041152949830528562, 7.83549547061645042121765394623, 8.785891869991726383636566755147, 9.534181708363558749196133230669, 10.56789003391955680103010733342

Graph of the $Z$-function along the critical line