L(s) = 1 | + (−0.707 + 0.707i)5-s + (1 + i)13-s + (1.41 + 1.41i)17-s − 1.00i·25-s − 1.41·29-s + (−1 + i)37-s − 1.41i·41-s − i·49-s + (1.41 − 1.41i)53-s − 1.41·65-s + (−1 − i)73-s − 2.00·85-s + 1.41·89-s + (−1 + i)97-s − 1.41i·101-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)5-s + (1 + i)13-s + (1.41 + 1.41i)17-s − 1.00i·25-s − 1.41·29-s + (−1 + i)37-s − 1.41i·41-s − i·49-s + (1.41 − 1.41i)53-s − 1.41·65-s + (−1 − i)73-s − 2.00·85-s + 1.41·89-s + (−1 + i)97-s − 1.41i·101-s + ⋯ |
Λ(s)=(=(720s/2ΓC(s)L(s)(0.662−0.749i)Λ(1−s)
Λ(s)=(=(720s/2ΓC(s)L(s)(0.662−0.749i)Λ(1−s)
Degree: |
2 |
Conductor: |
720
= 24⋅32⋅5
|
Sign: |
0.662−0.749i
|
Analytic conductor: |
0.359326 |
Root analytic conductor: |
0.599438 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ720(143,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 720, ( :0), 0.662−0.749i)
|
Particular Values
L(21) |
≈ |
0.8744477239 |
L(21) |
≈ |
0.8744477239 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(0.707−0.707i)T |
good | 7 | 1+iT2 |
| 11 | 1+T2 |
| 13 | 1+(−1−i)T+iT2 |
| 17 | 1+(−1.41−1.41i)T+iT2 |
| 19 | 1+T2 |
| 23 | 1+iT2 |
| 29 | 1+1.41T+T2 |
| 31 | 1−T2 |
| 37 | 1+(1−i)T−iT2 |
| 41 | 1+1.41iT−T2 |
| 43 | 1−iT2 |
| 47 | 1−iT2 |
| 53 | 1+(−1.41+1.41i)T−iT2 |
| 59 | 1−T2 |
| 61 | 1+T2 |
| 67 | 1+iT2 |
| 71 | 1+T2 |
| 73 | 1+(1+i)T+iT2 |
| 79 | 1+T2 |
| 83 | 1+iT2 |
| 89 | 1−1.41T+T2 |
| 97 | 1+(1−i)T−iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.69586414033327449488954340451, −10.09526613516142092490867168529, −8.875895662919085980133728579828, −8.158999394857400877990101158500, −7.24121539184512390265557339016, −6.41368655815196284656496659776, −5.46105895518190051972033628609, −3.94681818133471158596379612285, −3.48464899534862767580549396055, −1.79867177698340179480444143221,
1.09226915015899176819216067128, 3.04288437003052259917622483598, 3.95107740013189464419388771609, 5.17495173136970089075037723889, 5.82121470846177135671677441346, 7.31779022604041152949830528562, 7.83549547061645042121765394623, 8.785891869991726383636566755147, 9.534181708363558749196133230669, 10.56789003391955680103010733342