Properties

Label 2-7200-1.1-c1-0-1
Degree $2$
Conductor $7200$
Sign $1$
Analytic cond. $57.4922$
Root an. cond. $7.58236$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.47·7-s − 2.23·11-s − 4·13-s − 7·17-s − 6.70·19-s − 4.47·23-s + 4.47·31-s − 2·37-s − 5·41-s − 8.94·47-s + 13.0·49-s + 6·53-s − 8.94·59-s + 10·61-s + 2.23·67-s + 8.94·71-s + 9·73-s + 10.0·77-s − 4.47·79-s − 11.1·83-s + 5·89-s + 17.8·91-s − 2·97-s + 2·101-s + 8.94·103-s + 2.23·107-s + 6·109-s + ⋯
L(s)  = 1  − 1.69·7-s − 0.674·11-s − 1.10·13-s − 1.69·17-s − 1.53·19-s − 0.932·23-s + 0.803·31-s − 0.328·37-s − 0.780·41-s − 1.30·47-s + 1.85·49-s + 0.824·53-s − 1.16·59-s + 1.28·61-s + 0.273·67-s + 1.06·71-s + 1.05·73-s + 1.13·77-s − 0.503·79-s − 1.22·83-s + 0.529·89-s + 1.87·91-s − 0.203·97-s + 0.199·101-s + 0.881·103-s + 0.216·107-s + 0.574·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7200\)    =    \(2^{5} \cdot 3^{2} \cdot 5^{2}\)
Sign: $1$
Analytic conductor: \(57.4922\)
Root analytic conductor: \(7.58236\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.2242708258\)
\(L(\frac12)\) \(\approx\) \(0.2242708258\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
good7 \( 1 + 4.47T + 7T^{2} \)
11 \( 1 + 2.23T + 11T^{2} \)
13 \( 1 + 4T + 13T^{2} \)
17 \( 1 + 7T + 17T^{2} \)
19 \( 1 + 6.70T + 19T^{2} \)
23 \( 1 + 4.47T + 23T^{2} \)
29 \( 1 + 29T^{2} \)
31 \( 1 - 4.47T + 31T^{2} \)
37 \( 1 + 2T + 37T^{2} \)
41 \( 1 + 5T + 41T^{2} \)
43 \( 1 + 43T^{2} \)
47 \( 1 + 8.94T + 47T^{2} \)
53 \( 1 - 6T + 53T^{2} \)
59 \( 1 + 8.94T + 59T^{2} \)
61 \( 1 - 10T + 61T^{2} \)
67 \( 1 - 2.23T + 67T^{2} \)
71 \( 1 - 8.94T + 71T^{2} \)
73 \( 1 - 9T + 73T^{2} \)
79 \( 1 + 4.47T + 79T^{2} \)
83 \( 1 + 11.1T + 83T^{2} \)
89 \( 1 - 5T + 89T^{2} \)
97 \( 1 + 2T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.980286360355478078751598112334, −6.95500488351239097598011244739, −6.61579211215615866688393599815, −6.03285458939333797085466738682, −5.03078949706258477201998326411, −4.33313073580096613740132995939, −3.54676635402543720945217825706, −2.57339507191550055404880871394, −2.14386758342887398949923671531, −0.21685983661822244176389118654, 0.21685983661822244176389118654, 2.14386758342887398949923671531, 2.57339507191550055404880871394, 3.54676635402543720945217825706, 4.33313073580096613740132995939, 5.03078949706258477201998326411, 6.03285458939333797085466738682, 6.61579211215615866688393599815, 6.95500488351239097598011244739, 7.980286360355478078751598112334

Graph of the $Z$-function along the critical line