Properties

Label 2-728-1.1-c1-0-2
Degree $2$
Conductor $728$
Sign $1$
Analytic cond. $5.81310$
Root an. cond. $2.41103$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.669·3-s − 4.30·5-s + 7-s − 2.55·9-s − 0.669·11-s + 13-s + 2.88·15-s + 6.22·17-s + 6.30·19-s − 0.669·21-s − 5.63·23-s + 13.5·25-s + 3.71·27-s − 1.42·29-s + 4.09·31-s + 0.448·33-s − 4.30·35-s + 2.66·37-s − 0.669·39-s + 7.05·41-s − 10.5·43-s + 10.9·45-s + 4.09·47-s + 49-s − 4.16·51-s + 5.42·53-s + 2.88·55-s + ⋯
L(s)  = 1  − 0.386·3-s − 1.92·5-s + 0.377·7-s − 0.850·9-s − 0.201·11-s + 0.277·13-s + 0.744·15-s + 1.50·17-s + 1.44·19-s − 0.146·21-s − 1.17·23-s + 2.70·25-s + 0.715·27-s − 0.264·29-s + 0.734·31-s + 0.0780·33-s − 0.727·35-s + 0.438·37-s − 0.107·39-s + 1.10·41-s − 1.60·43-s + 1.63·45-s + 0.596·47-s + 0.142·49-s − 0.583·51-s + 0.744·53-s + 0.388·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(728\)    =    \(2^{3} \cdot 7 \cdot 13\)
Sign: $1$
Analytic conductor: \(5.81310\)
Root analytic conductor: \(2.41103\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 728,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8440568621\)
\(L(\frac12)\) \(\approx\) \(0.8440568621\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
7 \( 1 - T \)
13 \( 1 - T \)
good3 \( 1 + 0.669T + 3T^{2} \)
5 \( 1 + 4.30T + 5T^{2} \)
11 \( 1 + 0.669T + 11T^{2} \)
17 \( 1 - 6.22T + 17T^{2} \)
19 \( 1 - 6.30T + 19T^{2} \)
23 \( 1 + 5.63T + 23T^{2} \)
29 \( 1 + 1.42T + 29T^{2} \)
31 \( 1 - 4.09T + 31T^{2} \)
37 \( 1 - 2.66T + 37T^{2} \)
41 \( 1 - 7.05T + 41T^{2} \)
43 \( 1 + 10.5T + 43T^{2} \)
47 \( 1 - 4.09T + 47T^{2} \)
53 \( 1 - 5.42T + 53T^{2} \)
59 \( 1 + 7.26T + 59T^{2} \)
61 \( 1 - 2.28T + 61T^{2} \)
67 \( 1 - 2.21T + 67T^{2} \)
71 \( 1 - 5.56T + 71T^{2} \)
73 \( 1 - 11.8T + 73T^{2} \)
79 \( 1 - 0.312T + 79T^{2} \)
83 \( 1 + 3.03T + 83T^{2} \)
89 \( 1 - 4.12T + 89T^{2} \)
97 \( 1 - 7.43T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.66619426784494216400100501958, −9.556171465237468391745063741877, −8.222841813871199306655142183012, −8.013350326109376603180727465829, −7.12266720090285200796781230484, −5.81637975537818377637800513937, −4.94655443070003583486360350995, −3.82919788100451443642320161129, −3.03435789498427288103803756478, −0.78426293209142152061249036003, 0.78426293209142152061249036003, 3.03435789498427288103803756478, 3.82919788100451443642320161129, 4.94655443070003583486360350995, 5.81637975537818377637800513937, 7.12266720090285200796781230484, 8.013350326109376603180727465829, 8.222841813871199306655142183012, 9.556171465237468391745063741877, 10.66619426784494216400100501958

Graph of the $Z$-function along the critical line