L(s) = 1 | + (0.105 + 1.41i)2-s + (0.380 − 0.219i)3-s + (−1.97 + 0.296i)4-s + 1.63·5-s + (0.349 + 0.513i)6-s + (0.866 + 0.5i)7-s + (−0.625 − 2.75i)8-s + (−1.40 + 2.43i)9-s + (0.171 + 2.30i)10-s + (0.958 + 1.65i)11-s + (−0.687 + 0.547i)12-s + (3.59 − 0.256i)13-s + (−0.614 + 1.27i)14-s + (0.620 − 0.358i)15-s + (3.82 − 1.17i)16-s + (2.70 − 4.68i)17-s + ⋯ |
L(s) = 1 | + (0.0742 + 0.997i)2-s + (0.219 − 0.126i)3-s + (−0.988 + 0.148i)4-s + 0.729·5-s + (0.142 + 0.209i)6-s + (0.327 + 0.188i)7-s + (−0.221 − 0.975i)8-s + (−0.467 + 0.810i)9-s + (0.0541 + 0.727i)10-s + (0.288 + 0.500i)11-s + (−0.198 + 0.157i)12-s + (0.997 − 0.0711i)13-s + (−0.164 + 0.340i)14-s + (0.160 − 0.0925i)15-s + (0.956 − 0.292i)16-s + (0.655 − 1.13i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.277 - 0.960i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.277 - 0.960i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.06036 + 1.41025i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.06036 + 1.41025i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.105 - 1.41i)T \) |
| 7 | \( 1 + (-0.866 - 0.5i)T \) |
| 13 | \( 1 + (-3.59 + 0.256i)T \) |
good | 3 | \( 1 + (-0.380 + 0.219i)T + (1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 - 1.63T + 5T^{2} \) |
| 11 | \( 1 + (-0.958 - 1.65i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-2.70 + 4.68i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.50 - 2.61i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-3.32 - 5.76i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (8.30 - 4.79i)T + (14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 2.44iT - 31T^{2} \) |
| 37 | \( 1 + (-1.88 - 3.26i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-8.34 + 4.81i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-9.67 - 5.58i)T + (21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 0.314iT - 47T^{2} \) |
| 53 | \( 1 - 1.36iT - 53T^{2} \) |
| 59 | \( 1 + (6.13 - 10.6i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (7.24 + 4.18i)T + (30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (1.26 + 2.19i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (14.4 + 8.33i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 10.2iT - 73T^{2} \) |
| 79 | \( 1 + 1.03T + 79T^{2} \) |
| 83 | \( 1 - 6.81T + 83T^{2} \) |
| 89 | \( 1 + (-6.37 + 3.67i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-1.88 - 1.09i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.51626829849645448459845612067, −9.303495620125479733653135530535, −9.083045594993872280579959401165, −7.72870599124237769305226576995, −7.45293839069229785944752306287, −5.96689884809542896898436589187, −5.59803680708167554000592933979, −4.51000500809399939231900006496, −3.19487719636791079604011945348, −1.61072610961187008456816303551,
0.990773779252789091190887081715, 2.31328237743223257518102669065, 3.52179016065166877723016607223, 4.27507596887252682977602512840, 5.74631806658168566831701518394, 6.19244632346348262133754430068, 7.87456989610557211547427925847, 8.869665613396903915556807967706, 9.201418028178339427336872342582, 10.28502159664990562527975876148