L(s) = 1 | + (−0.509 + 0.883i)3-s − 2.02i·5-s + (−0.866 + 0.5i)7-s + (0.979 + 1.69i)9-s + (−5.06 − 2.92i)11-s + (−2.41 + 2.68i)13-s + (1.78 + 1.03i)15-s + (3.04 + 5.26i)17-s + (−0.610 + 0.352i)19-s − 1.01i·21-s + (−2.48 + 4.30i)23-s + 0.919·25-s − 5.05·27-s + (−4.92 + 8.53i)29-s − 4.81i·31-s + ⋯ |
L(s) = 1 | + (−0.294 + 0.509i)3-s − 0.903i·5-s + (−0.327 + 0.188i)7-s + (0.326 + 0.565i)9-s + (−1.52 − 0.881i)11-s + (−0.668 + 0.743i)13-s + (0.460 + 0.265i)15-s + (0.737 + 1.27i)17-s + (−0.139 + 0.0808i)19-s − 0.222i·21-s + (−0.517 + 0.897i)23-s + 0.183·25-s − 0.973·27-s + (−0.914 + 1.58i)29-s − 0.864i·31-s + ⋯ |
Λ(s)=(=(728s/2ΓC(s)L(s)(−0.751−0.659i)Λ(2−s)
Λ(s)=(=(728s/2ΓC(s+1/2)L(s)(−0.751−0.659i)Λ(1−s)
Degree: |
2 |
Conductor: |
728
= 23⋅7⋅13
|
Sign: |
−0.751−0.659i
|
Analytic conductor: |
5.81310 |
Root analytic conductor: |
2.41103 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ728(225,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 728, ( :1/2), −0.751−0.659i)
|
Particular Values
L(1) |
≈ |
0.200103+0.531798i |
L(21) |
≈ |
0.200103+0.531798i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(0.866−0.5i)T |
| 13 | 1+(2.41−2.68i)T |
good | 3 | 1+(0.509−0.883i)T+(−1.5−2.59i)T2 |
| 5 | 1+2.02iT−5T2 |
| 11 | 1+(5.06+2.92i)T+(5.5+9.52i)T2 |
| 17 | 1+(−3.04−5.26i)T+(−8.5+14.7i)T2 |
| 19 | 1+(0.610−0.352i)T+(9.5−16.4i)T2 |
| 23 | 1+(2.48−4.30i)T+(−11.5−19.9i)T2 |
| 29 | 1+(4.92−8.53i)T+(−14.5−25.1i)T2 |
| 31 | 1+4.81iT−31T2 |
| 37 | 1+(−1.45−0.838i)T+(18.5+32.0i)T2 |
| 41 | 1+(1.89+1.09i)T+(20.5+35.5i)T2 |
| 43 | 1+(−0.391−0.677i)T+(−21.5+37.2i)T2 |
| 47 | 1−5.26iT−47T2 |
| 53 | 1+10.0T+53T2 |
| 59 | 1+(5.03−2.90i)T+(29.5−51.0i)T2 |
| 61 | 1+(3.48+6.03i)T+(−30.5+52.8i)T2 |
| 67 | 1+(−9.63−5.56i)T+(33.5+58.0i)T2 |
| 71 | 1+(10.7−6.22i)T+(35.5−61.4i)T2 |
| 73 | 1+11.4iT−73T2 |
| 79 | 1−1.05T+79T2 |
| 83 | 1+3.04iT−83T2 |
| 89 | 1+(1.34+0.775i)T+(44.5+77.0i)T2 |
| 97 | 1+(−1.33+0.767i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.65672006636119345169524707125, −9.924737762611939785505765879979, −9.094842683458798753708430707645, −8.131032156274490636291435827059, −7.48953060698649360396748519462, −5.95692814710090517617079326762, −5.31730820815345411938065788699, −4.51074581639131382542107280841, −3.30437609375132688338027008223, −1.77732907451972688249686981972,
0.28757343407275822317073358684, 2.33740334738522656758597591762, 3.19619734445304582112153965324, 4.67218786923450212878991788166, 5.67716397997850005968009950442, 6.72485270705195221624971040925, 7.38363845827066758305439172868, 7.947992014248597005626894001580, 9.560114367038726217958559007594, 10.07612984570341574322782992655