L(s) = 1 | + (−0.509 + 0.883i)3-s − 2.02i·5-s + (−0.866 + 0.5i)7-s + (0.979 + 1.69i)9-s + (−5.06 − 2.92i)11-s + (−2.41 + 2.68i)13-s + (1.78 + 1.03i)15-s + (3.04 + 5.26i)17-s + (−0.610 + 0.352i)19-s − 1.01i·21-s + (−2.48 + 4.30i)23-s + 0.919·25-s − 5.05·27-s + (−4.92 + 8.53i)29-s − 4.81i·31-s + ⋯ |
L(s) = 1 | + (−0.294 + 0.509i)3-s − 0.903i·5-s + (−0.327 + 0.188i)7-s + (0.326 + 0.565i)9-s + (−1.52 − 0.881i)11-s + (−0.668 + 0.743i)13-s + (0.460 + 0.265i)15-s + (0.737 + 1.27i)17-s + (−0.139 + 0.0808i)19-s − 0.222i·21-s + (−0.517 + 0.897i)23-s + 0.183·25-s − 0.973·27-s + (−0.914 + 1.58i)29-s − 0.864i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.751 - 0.659i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.751 - 0.659i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.200103 + 0.531798i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.200103 + 0.531798i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 7 | \( 1 + (0.866 - 0.5i)T \) |
| 13 | \( 1 + (2.41 - 2.68i)T \) |
good | 3 | \( 1 + (0.509 - 0.883i)T + (-1.5 - 2.59i)T^{2} \) |
| 5 | \( 1 + 2.02iT - 5T^{2} \) |
| 11 | \( 1 + (5.06 + 2.92i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-3.04 - 5.26i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (0.610 - 0.352i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (2.48 - 4.30i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (4.92 - 8.53i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 4.81iT - 31T^{2} \) |
| 37 | \( 1 + (-1.45 - 0.838i)T + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (1.89 + 1.09i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-0.391 - 0.677i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 5.26iT - 47T^{2} \) |
| 53 | \( 1 + 10.0T + 53T^{2} \) |
| 59 | \( 1 + (5.03 - 2.90i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3.48 + 6.03i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (-9.63 - 5.56i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (10.7 - 6.22i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + 11.4iT - 73T^{2} \) |
| 79 | \( 1 - 1.05T + 79T^{2} \) |
| 83 | \( 1 + 3.04iT - 83T^{2} \) |
| 89 | \( 1 + (1.34 + 0.775i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-1.33 + 0.767i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.65672006636119345169524707125, −9.924737762611939785505765879979, −9.094842683458798753708430707645, −8.131032156274490636291435827059, −7.48953060698649360396748519462, −5.95692814710090517617079326762, −5.31730820815345411938065788699, −4.51074581639131382542107280841, −3.30437609375132688338027008223, −1.77732907451972688249686981972,
0.28757343407275822317073358684, 2.33740334738522656758597591762, 3.19619734445304582112153965324, 4.67218786923450212878991788166, 5.67716397997850005968009950442, 6.72485270705195221624971040925, 7.38363845827066758305439172868, 7.947992014248597005626894001580, 9.560114367038726217958559007594, 10.07612984570341574322782992655