L(s) = 1 | − 2-s + (−0.5 − 0.866i)3-s + 4-s + (0.866 − 0.5i)5-s + (0.5 + 0.866i)6-s − i·7-s − 8-s + (−0.866 + 0.5i)10-s + (−0.5 − 0.866i)11-s + (−0.5 − 0.866i)12-s + i·13-s + i·14-s + (−0.866 − 0.499i)15-s + 16-s + (0.5 − 0.866i)19-s + (0.866 − 0.5i)20-s + ⋯ |
L(s) = 1 | − 2-s + (−0.5 − 0.866i)3-s + 4-s + (0.866 − 0.5i)5-s + (0.5 + 0.866i)6-s − i·7-s − 8-s + (−0.866 + 0.5i)10-s + (−0.5 − 0.866i)11-s + (−0.5 − 0.866i)12-s + i·13-s + i·14-s + (−0.866 − 0.499i)15-s + 16-s + (0.5 − 0.866i)19-s + (0.866 − 0.5i)20-s + ⋯ |
Λ(s)=(=(728s/2ΓC(s)L(s)(−0.325+0.945i)Λ(1−s)
Λ(s)=(=(728s/2ΓC(s)L(s)(−0.325+0.945i)Λ(1−s)
Degree: |
2 |
Conductor: |
728
= 23⋅7⋅13
|
Sign: |
−0.325+0.945i
|
Analytic conductor: |
0.363319 |
Root analytic conductor: |
0.602759 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ728(347,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 728, ( :0), −0.325+0.945i)
|
Particular Values
L(21) |
≈ |
0.5903606157 |
L(21) |
≈ |
0.5903606157 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+T |
| 7 | 1+iT |
| 13 | 1−iT |
good | 3 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 5 | 1+(−0.866+0.5i)T+(0.5−0.866i)T2 |
| 11 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 17 | 1+T2 |
| 19 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 23 | 1−2iT−T2 |
| 29 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 31 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 37 | 1−T2 |
| 41 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 43 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 47 | 1+(−0.866+0.5i)T+(0.5−0.866i)T2 |
| 53 | 1+(0.866+0.5i)T+(0.5+0.866i)T2 |
| 59 | 1+T2 |
| 61 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 67 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
| 71 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 73 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 79 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 83 | 1+T2 |
| 89 | 1+T2 |
| 97 | 1+(−0.5−0.866i)T+(−0.5+0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.17507515131040933052316835257, −9.494489990792174281475797617064, −8.748832012791474453109619800538, −7.51526895009016576950254481589, −7.09425446526020399795760897624, −6.10856531479308486013993950020, −5.35381160415002680388488451279, −3.59574846213024905749184733030, −1.94948537325343994488910571721, −0.961326731060968662546534500291,
2.06261904139629663411077309125, 2.94782009069707185549142777487, 4.73451492520161941929283758894, 5.73936007860252147717166566832, 6.29144174588415031025679057351, 7.59244321616076205698098050892, 8.379842001934456829070862748877, 9.540038732425118209358276689250, 9.985327483338032861826747885603, 10.53296999966859038433973004297