L(s) = 1 | + (0.866 − 0.5i)2-s + (−0.965 − 1.67i)3-s + (0.499 − 0.866i)4-s + 0.517i·5-s + (−1.67 − 0.965i)6-s + (−0.866 − 0.5i)7-s − 0.999i·8-s + (−1.36 + 2.36i)9-s + (0.258 + 0.448i)10-s − 1.93·12-s + (−0.258 − 0.965i)13-s − 0.999·14-s + (0.866 − 0.499i)15-s + (−0.5 − 0.866i)16-s + 2.73i·18-s + (1.22 + 0.707i)19-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)2-s + (−0.965 − 1.67i)3-s + (0.499 − 0.866i)4-s + 0.517i·5-s + (−1.67 − 0.965i)6-s + (−0.866 − 0.5i)7-s − 0.999i·8-s + (−1.36 + 2.36i)9-s + (0.258 + 0.448i)10-s − 1.93·12-s + (−0.258 − 0.965i)13-s − 0.999·14-s + (0.866 − 0.499i)15-s + (−0.5 − 0.866i)16-s + 2.73i·18-s + (1.22 + 0.707i)19-s + ⋯ |
Λ(s)=(=(728s/2ΓC(s)L(s)(−0.969+0.246i)Λ(1−s)
Λ(s)=(=(728s/2ΓC(s)L(s)(−0.969+0.246i)Λ(1−s)
Degree: |
2 |
Conductor: |
728
= 23⋅7⋅13
|
Sign: |
−0.969+0.246i
|
Analytic conductor: |
0.363319 |
Root analytic conductor: |
0.602759 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ728(517,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 728, ( :0), −0.969+0.246i)
|
Particular Values
L(21) |
≈ |
0.9727353252 |
L(21) |
≈ |
0.9727353252 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.866+0.5i)T |
| 7 | 1+(0.866+0.5i)T |
| 13 | 1+(0.258+0.965i)T |
good | 3 | 1+(0.965+1.67i)T+(−0.5+0.866i)T2 |
| 5 | 1−0.517iT−T2 |
| 11 | 1+(−0.5+0.866i)T2 |
| 17 | 1+(0.5+0.866i)T2 |
| 19 | 1+(−1.22−0.707i)T+(0.5+0.866i)T2 |
| 23 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 29 | 1+(0.5−0.866i)T2 |
| 31 | 1+T2 |
| 37 | 1+(−0.5+0.866i)T2 |
| 41 | 1+(−0.5+0.866i)T2 |
| 43 | 1+(0.5+0.866i)T2 |
| 47 | 1+T2 |
| 53 | 1−T2 |
| 59 | 1+(0.448+0.258i)T+(0.5+0.866i)T2 |
| 61 | 1+(−0.965+1.67i)T+(−0.5−0.866i)T2 |
| 67 | 1+(−0.5+0.866i)T2 |
| 71 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 73 | 1+T2 |
| 79 | 1+T2 |
| 83 | 1−1.41iT−T2 |
| 89 | 1+(−0.5+0.866i)T2 |
| 97 | 1+(−0.5−0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.58784810762524686326876202046, −9.822387998177571423636545788583, −8.039649174695979859371199647945, −7.19549683533480476332749574981, −6.57542422545948173032171684454, −5.86914294820299296504722163499, −5.03448634276592809840388836677, −3.37298153125330783713215686489, −2.39438837219290775156278920171, −0.912711557107462256778664155386,
2.99317266879906967942957282813, 3.91153913587727062374076781707, 4.79794109337177889767726832972, 5.44708159964282805717245528768, 6.20537830094755422218196439131, 7.14149840591360225423978517126, 8.769495308952641826636423203483, 9.312494585354325145330862119746, 10.09590946888574478561337966873, 11.23647710904880353326443204830