L(s) = 1 | + (0.866 − 0.5i)2-s + (−0.965 − 1.67i)3-s + (0.499 − 0.866i)4-s + 0.517i·5-s + (−1.67 − 0.965i)6-s + (−0.866 − 0.5i)7-s − 0.999i·8-s + (−1.36 + 2.36i)9-s + (0.258 + 0.448i)10-s − 1.93·12-s + (−0.258 − 0.965i)13-s − 0.999·14-s + (0.866 − 0.499i)15-s + (−0.5 − 0.866i)16-s + 2.73i·18-s + (1.22 + 0.707i)19-s + ⋯ |
L(s) = 1 | + (0.866 − 0.5i)2-s + (−0.965 − 1.67i)3-s + (0.499 − 0.866i)4-s + 0.517i·5-s + (−1.67 − 0.965i)6-s + (−0.866 − 0.5i)7-s − 0.999i·8-s + (−1.36 + 2.36i)9-s + (0.258 + 0.448i)10-s − 1.93·12-s + (−0.258 − 0.965i)13-s − 0.999·14-s + (0.866 − 0.499i)15-s + (−0.5 − 0.866i)16-s + 2.73i·18-s + (1.22 + 0.707i)19-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.969 + 0.246i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.969 + 0.246i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9727353252\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9727353252\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 + 0.5i)T \) |
| 7 | \( 1 + (0.866 + 0.5i)T \) |
| 13 | \( 1 + (0.258 + 0.965i)T \) |
good | 3 | \( 1 + (0.965 + 1.67i)T + (-0.5 + 0.866i)T^{2} \) |
| 5 | \( 1 - 0.517iT - T^{2} \) |
| 11 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 19 | \( 1 + (-1.22 - 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 + 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 + (0.448 + 0.258i)T + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.965 + 1.67i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 + T^{2} \) |
| 83 | \( 1 - 1.41iT - T^{2} \) |
| 89 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.58784810762524686326876202046, −9.822387998177571423636545788583, −8.039649174695979859371199647945, −7.19549683533480476332749574981, −6.57542422545948173032171684454, −5.86914294820299296504722163499, −5.03448634276592809840388836677, −3.37298153125330783713215686489, −2.39438837219290775156278920171, −0.912711557107462256778664155386,
2.99317266879906967942957282813, 3.91153913587727062374076781707, 4.79794109337177889767726832972, 5.44708159964282805717245528768, 6.20537830094755422218196439131, 7.14149840591360225423978517126, 8.769495308952641826636423203483, 9.312494585354325145330862119746, 10.09590946888574478561337966873, 11.23647710904880353326443204830