L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.766 + 1.32i)3-s + (−0.499 + 0.866i)4-s + (0.939 + 1.62i)5-s + 1.53·6-s + (0.766 − 0.642i)7-s + 0.999·8-s + (−0.673 − 1.16i)9-s + (0.939 − 1.62i)10-s + (−0.766 − 1.32i)12-s + 13-s + (−0.939 − 0.342i)14-s − 2.87·15-s + (−0.5 − 0.866i)16-s + (−0.173 + 0.300i)17-s + (−0.673 + 1.16i)18-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.766 + 1.32i)3-s + (−0.499 + 0.866i)4-s + (0.939 + 1.62i)5-s + 1.53·6-s + (0.766 − 0.642i)7-s + 0.999·8-s + (−0.673 − 1.16i)9-s + (0.939 − 1.62i)10-s + (−0.766 − 1.32i)12-s + 13-s + (−0.939 − 0.342i)14-s − 2.87·15-s + (−0.5 − 0.866i)16-s + (−0.173 + 0.300i)17-s + (−0.673 + 1.16i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.400 - 0.916i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 728 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.400 - 0.916i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7145941770\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7145941770\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 7 | \( 1 + (-0.766 + 0.642i)T \) |
| 13 | \( 1 - T \) |
good | 3 | \( 1 + (0.766 - 1.32i)T + (-0.5 - 0.866i)T^{2} \) |
| 5 | \( 1 + (-0.939 - 1.62i)T + (-0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + (0.173 - 0.300i)T + (-0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 - T^{2} \) |
| 31 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (0.766 + 1.32i)T + (-0.5 + 0.866i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + 1.87T + T^{2} \) |
| 47 | \( 1 + (0.173 + 0.300i)T + (-0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 - 0.347T + T^{2} \) |
| 73 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.76652306429724869938642551776, −10.15876021358364465108240169645, −9.592957165843643450678748654411, −8.480944902670177016379999090219, −7.28571964248952547031922588487, −6.27055106705662348541948202154, −5.23598991571887818740669365644, −4.06218805554637986092414346063, −3.34649718180602442471678241961, −1.92580869753063113066288150171,
1.18013923071166045748001467308, 1.79876621633891232760747008070, 4.76771858041318593856184519753, 5.32102613311105753897672002550, 6.07639122919980987448816085856, 6.75489963167013748081315921839, 8.083546361754245083883054230087, 8.467815631710911945227530890184, 9.229550266598375253458869559798, 10.29404243469278849743725374537