L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.766 + 1.32i)3-s + (−0.499 + 0.866i)4-s + (0.939 + 1.62i)5-s + 1.53·6-s + (0.766 − 0.642i)7-s + 0.999·8-s + (−0.673 − 1.16i)9-s + (0.939 − 1.62i)10-s + (−0.766 − 1.32i)12-s + 13-s + (−0.939 − 0.342i)14-s − 2.87·15-s + (−0.5 − 0.866i)16-s + (−0.173 + 0.300i)17-s + (−0.673 + 1.16i)18-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.866i)2-s + (−0.766 + 1.32i)3-s + (−0.499 + 0.866i)4-s + (0.939 + 1.62i)5-s + 1.53·6-s + (0.766 − 0.642i)7-s + 0.999·8-s + (−0.673 − 1.16i)9-s + (0.939 − 1.62i)10-s + (−0.766 − 1.32i)12-s + 13-s + (−0.939 − 0.342i)14-s − 2.87·15-s + (−0.5 − 0.866i)16-s + (−0.173 + 0.300i)17-s + (−0.673 + 1.16i)18-s + ⋯ |
Λ(s)=(=(728s/2ΓC(s)L(s)(0.400−0.916i)Λ(1−s)
Λ(s)=(=(728s/2ΓC(s)L(s)(0.400−0.916i)Λ(1−s)
Degree: |
2 |
Conductor: |
728
= 23⋅7⋅13
|
Sign: |
0.400−0.916i
|
Analytic conductor: |
0.363319 |
Root analytic conductor: |
0.602759 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ728(571,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 728, ( :0), 0.400−0.916i)
|
Particular Values
L(21) |
≈ |
0.7145941770 |
L(21) |
≈ |
0.7145941770 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.5+0.866i)T |
| 7 | 1+(−0.766+0.642i)T |
| 13 | 1−T |
good | 3 | 1+(0.766−1.32i)T+(−0.5−0.866i)T2 |
| 5 | 1+(−0.939−1.62i)T+(−0.5+0.866i)T2 |
| 11 | 1+(0.5+0.866i)T2 |
| 17 | 1+(0.173−0.300i)T+(−0.5−0.866i)T2 |
| 19 | 1+(0.5−0.866i)T2 |
| 23 | 1+(0.5−0.866i)T2 |
| 29 | 1−T2 |
| 31 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 37 | 1+(0.766+1.32i)T+(−0.5+0.866i)T2 |
| 41 | 1−T2 |
| 43 | 1+1.87T+T2 |
| 47 | 1+(0.173+0.300i)T+(−0.5+0.866i)T2 |
| 53 | 1+(0.5+0.866i)T2 |
| 59 | 1+(0.5+0.866i)T2 |
| 61 | 1+(0.5−0.866i)T2 |
| 67 | 1+(0.5+0.866i)T2 |
| 71 | 1−0.347T+T2 |
| 73 | 1+(0.5+0.866i)T2 |
| 79 | 1+(0.5−0.866i)T2 |
| 83 | 1−T2 |
| 89 | 1+(0.5−0.866i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.76652306429724869938642551776, −10.15876021358364465108240169645, −9.592957165843643450678748654411, −8.480944902670177016379999090219, −7.28571964248952547031922588487, −6.27055106705662348541948202154, −5.23598991571887818740669365644, −4.06218805554637986092414346063, −3.34649718180602442471678241961, −1.92580869753063113066288150171,
1.18013923071166045748001467308, 1.79876621633891232760747008070, 4.76771858041318593856184519753, 5.32102613311105753897672002550, 6.07639122919980987448816085856, 6.75489963167013748081315921839, 8.083546361754245083883054230087, 8.467815631710911945227530890184, 9.229550266598375253458869559798, 10.29404243469278849743725374537