L(s) = 1 | − 3-s + (−1.5 − 2.59i)5-s + (0.5 − 2.59i)7-s − 2·9-s − 11-s + (−1 + 3.46i)13-s + (1.5 + 2.59i)15-s + (1 + 1.73i)17-s − 3·19-s + (−0.5 + 2.59i)21-s + (−2 + 3.46i)25-s + 5·27-s + (4.5 + 7.79i)29-s + (−0.5 + 0.866i)31-s + 33-s + ⋯ |
L(s) = 1 | − 0.577·3-s + (−0.670 − 1.16i)5-s + (0.188 − 0.981i)7-s − 0.666·9-s − 0.301·11-s + (−0.277 + 0.960i)13-s + (0.387 + 0.670i)15-s + (0.242 + 0.420i)17-s − 0.688·19-s + (−0.109 + 0.566i)21-s + (−0.400 + 0.692i)25-s + 0.962·27-s + (0.835 + 1.44i)29-s + (−0.0898 + 0.155i)31-s + 0.174·33-s + ⋯ |
Λ(s)=(=(728s/2ΓC(s)L(s)(−0.703−0.710i)Λ(2−s)
Λ(s)=(=(728s/2ΓC(s+1/2)L(s)(−0.703−0.710i)Λ(1−s)
Degree: |
2 |
Conductor: |
728
= 23⋅7⋅13
|
Sign: |
−0.703−0.710i
|
Analytic conductor: |
5.81310 |
Root analytic conductor: |
2.41103 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ728(81,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
1
|
Selberg data: |
(2, 728, ( :1/2), −0.703−0.710i)
|
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(−0.5+2.59i)T |
| 13 | 1+(1−3.46i)T |
good | 3 | 1+T+3T2 |
| 5 | 1+(1.5+2.59i)T+(−2.5+4.33i)T2 |
| 11 | 1+T+11T2 |
| 17 | 1+(−1−1.73i)T+(−8.5+14.7i)T2 |
| 19 | 1+3T+19T2 |
| 23 | 1+(−11.5−19.9i)T2 |
| 29 | 1+(−4.5−7.79i)T+(−14.5+25.1i)T2 |
| 31 | 1+(0.5−0.866i)T+(−15.5−26.8i)T2 |
| 37 | 1+(5−8.66i)T+(−18.5−32.0i)T2 |
| 41 | 1+(1.5+2.59i)T+(−20.5+35.5i)T2 |
| 43 | 1+(1.5−2.59i)T+(−21.5−37.2i)T2 |
| 47 | 1+(5.5+9.52i)T+(−23.5+40.7i)T2 |
| 53 | 1+(1.5−2.59i)T+(−26.5−45.8i)T2 |
| 59 | 1+(6+10.3i)T+(−29.5+51.0i)T2 |
| 61 | 1+5T+61T2 |
| 67 | 1+9T+67T2 |
| 71 | 1+(−0.5+0.866i)T+(−35.5−61.4i)T2 |
| 73 | 1+(5.5−9.52i)T+(−36.5−63.2i)T2 |
| 79 | 1+(−4.5−7.79i)T+(−39.5+68.4i)T2 |
| 83 | 1+8T+83T2 |
| 89 | 1+(−5+8.66i)T+(−44.5−77.0i)T2 |
| 97 | 1+(−6.5+11.2i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.00542970929772758021743164874, −8.699245434152593349296847277192, −8.362682670475705107528823623482, −7.20874132291086813603661315875, −6.34680427516949457631538116206, −5.01161062926751993932665747937, −4.60077667820527999883254340837, −3.40608782404698359156344392919, −1.45242600029716425330608173542, 0,
2.50341705440163373610399575474, 3.21903736313216218490155977672, 4.71576316896358109364951279152, 5.74122411813187522605003405952, 6.36867670511174030911188506353, 7.54297387751119883840500787058, 8.182539007613774978172420930244, 9.212346144177994265292567663126, 10.43314165639347719582902835866