L(s) = 1 | + 2.46·5-s + 6.46·13-s + 5.92·17-s + 1.07·25-s − 1.53·29-s + 9.39·37-s + 10·41-s − 7·49-s − 14·53-s − 15.3·61-s + 15.9·65-s + 16.8·73-s + 14.6·85-s − 18.8·89-s + 18·97-s + 2·101-s − 14.3·109-s + 20.8·113-s + ⋯ |
L(s) = 1 | + 1.10·5-s + 1.79·13-s + 1.43·17-s + 0.214·25-s − 0.285·29-s + 1.54·37-s + 1.56·41-s − 49-s − 1.92·53-s − 1.97·61-s + 1.97·65-s + 1.97·73-s + 1.58·85-s − 1.99·89-s + 1.82·97-s + 0.199·101-s − 1.37·109-s + 1.96·113-s + ⋯ |
Λ(s)=(=(5184s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(5184s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.973954559 |
L(21) |
≈ |
2.973954559 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1−2.46T+5T2 |
| 7 | 1+7T2 |
| 11 | 1+11T2 |
| 13 | 1−6.46T+13T2 |
| 17 | 1−5.92T+17T2 |
| 19 | 1+19T2 |
| 23 | 1+23T2 |
| 29 | 1+1.53T+29T2 |
| 31 | 1+31T2 |
| 37 | 1−9.39T+37T2 |
| 41 | 1−10T+41T2 |
| 43 | 1+43T2 |
| 47 | 1+47T2 |
| 53 | 1+14T+53T2 |
| 59 | 1+59T2 |
| 61 | 1+15.3T+61T2 |
| 67 | 1+67T2 |
| 71 | 1+71T2 |
| 73 | 1−16.8T+73T2 |
| 79 | 1+79T2 |
| 83 | 1+83T2 |
| 89 | 1+18.8T+89T2 |
| 97 | 1−18T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.077050173209106070326267514398, −7.70624430007089046212799027795, −6.47436308696754808961874685495, −6.04161228800115391918699617432, −5.55759572377750697368283758701, −4.55532150381668773045619297085, −3.61740212162844662839798720138, −2.87993906012818302723350816276, −1.74120521064781890205680362285, −1.03071923477985079780402782356,
1.03071923477985079780402782356, 1.74120521064781890205680362285, 2.87993906012818302723350816276, 3.61740212162844662839798720138, 4.55532150381668773045619297085, 5.55759572377750697368283758701, 6.04161228800115391918699617432, 6.47436308696754808961874685495, 7.70624430007089046212799027795, 8.077050173209106070326267514398