Properties

Label 2-72e2-1.1-c1-0-5
Degree $2$
Conductor $5184$
Sign $1$
Analytic cond. $41.3944$
Root an. cond. $6.43385$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.46·5-s − 0.464·13-s − 7.92·17-s + 14.9·25-s − 8.46·29-s − 11.3·37-s + 10·41-s − 7·49-s − 14·53-s + 5.39·61-s + 2.07·65-s − 10.8·73-s + 35.3·85-s + 8.85·89-s + 18·97-s + 2·101-s + 20.3·109-s − 6.85·113-s + ⋯
L(s)  = 1  − 1.99·5-s − 0.128·13-s − 1.92·17-s + 2.98·25-s − 1.57·29-s − 1.87·37-s + 1.56·41-s − 49-s − 1.92·53-s + 0.690·61-s + 0.256·65-s − 1.27·73-s + 3.83·85-s + 0.938·89-s + 1.82·97-s + 0.199·101-s + 1.94·109-s − 0.644·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5184 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5184 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5184\)    =    \(2^{6} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(41.3944\)
Root analytic conductor: \(6.43385\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 5184,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5137331591\)
\(L(\frac12)\) \(\approx\) \(0.5137331591\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 4.46T + 5T^{2} \)
7 \( 1 + 7T^{2} \)
11 \( 1 + 11T^{2} \)
13 \( 1 + 0.464T + 13T^{2} \)
17 \( 1 + 7.92T + 17T^{2} \)
19 \( 1 + 19T^{2} \)
23 \( 1 + 23T^{2} \)
29 \( 1 + 8.46T + 29T^{2} \)
31 \( 1 + 31T^{2} \)
37 \( 1 + 11.3T + 37T^{2} \)
41 \( 1 - 10T + 41T^{2} \)
43 \( 1 + 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 + 14T + 53T^{2} \)
59 \( 1 + 59T^{2} \)
61 \( 1 - 5.39T + 61T^{2} \)
67 \( 1 + 67T^{2} \)
71 \( 1 + 71T^{2} \)
73 \( 1 + 10.8T + 73T^{2} \)
79 \( 1 + 79T^{2} \)
83 \( 1 + 83T^{2} \)
89 \( 1 - 8.85T + 89T^{2} \)
97 \( 1 - 18T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.156612511271434346526020858050, −7.47097474835230567969543299763, −7.00686009611450678944376664071, −6.22022506250851922997472385938, −5.01331836638713343789264024931, −4.44494178778729488061745237176, −3.77906035919093832763527125450, −3.07409752224957339324227664587, −1.90448245573759145325687976885, −0.37288790028450785323453949242, 0.37288790028450785323453949242, 1.90448245573759145325687976885, 3.07409752224957339324227664587, 3.77906035919093832763527125450, 4.44494178778729488061745237176, 5.01331836638713343789264024931, 6.22022506250851922997472385938, 7.00686009611450678944376664071, 7.47097474835230567969543299763, 8.156612511271434346526020858050

Graph of the $Z$-function along the critical line