L(s) = 1 | − 4.46·5-s − 0.464·13-s − 7.92·17-s + 14.9·25-s − 8.46·29-s − 11.3·37-s + 10·41-s − 7·49-s − 14·53-s + 5.39·61-s + 2.07·65-s − 10.8·73-s + 35.3·85-s + 8.85·89-s + 18·97-s + 2·101-s + 20.3·109-s − 6.85·113-s + ⋯ |
L(s) = 1 | − 1.99·5-s − 0.128·13-s − 1.92·17-s + 2.98·25-s − 1.57·29-s − 1.87·37-s + 1.56·41-s − 49-s − 1.92·53-s + 0.690·61-s + 0.256·65-s − 1.27·73-s + 3.83·85-s + 0.938·89-s + 1.82·97-s + 0.199·101-s + 1.94·109-s − 0.644·113-s + ⋯ |
Λ(s)=(=(5184s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(5184s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.5137331591 |
L(21) |
≈ |
0.5137331591 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1+4.46T+5T2 |
| 7 | 1+7T2 |
| 11 | 1+11T2 |
| 13 | 1+0.464T+13T2 |
| 17 | 1+7.92T+17T2 |
| 19 | 1+19T2 |
| 23 | 1+23T2 |
| 29 | 1+8.46T+29T2 |
| 31 | 1+31T2 |
| 37 | 1+11.3T+37T2 |
| 41 | 1−10T+41T2 |
| 43 | 1+43T2 |
| 47 | 1+47T2 |
| 53 | 1+14T+53T2 |
| 59 | 1+59T2 |
| 61 | 1−5.39T+61T2 |
| 67 | 1+67T2 |
| 71 | 1+71T2 |
| 73 | 1+10.8T+73T2 |
| 79 | 1+79T2 |
| 83 | 1+83T2 |
| 89 | 1−8.85T+89T2 |
| 97 | 1−18T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.156612511271434346526020858050, −7.47097474835230567969543299763, −7.00686009611450678944376664071, −6.22022506250851922997472385938, −5.01331836638713343789264024931, −4.44494178778729488061745237176, −3.77906035919093832763527125450, −3.07409752224957339324227664587, −1.90448245573759145325687976885, −0.37288790028450785323453949242,
0.37288790028450785323453949242, 1.90448245573759145325687976885, 3.07409752224957339324227664587, 3.77906035919093832763527125450, 4.44494178778729488061745237176, 5.01331836638713343789264024931, 6.22022506250851922997472385938, 7.00686009611450678944376664071, 7.47097474835230567969543299763, 8.156612511271434346526020858050