L(s) = 1 | − 2.32·2-s − 3·3-s − 2.57·4-s − 5·5-s + 6.98·6-s + 24.6·8-s + 9·9-s + 11.6·10-s + 52.6·11-s + 7.73·12-s − 78.1·13-s + 15·15-s − 36.7·16-s + 76.1·17-s − 20.9·18-s − 73.8·19-s + 12.8·20-s − 122.·22-s + 137.·23-s − 73.8·24-s + 25·25-s + 182.·26-s − 27·27-s − 289.·29-s − 34.9·30-s + 83.9·31-s − 111.·32-s + ⋯ |
L(s) = 1 | − 0.823·2-s − 0.577·3-s − 0.322·4-s − 0.447·5-s + 0.475·6-s + 1.08·8-s + 0.333·9-s + 0.368·10-s + 1.44·11-s + 0.186·12-s − 1.66·13-s + 0.258·15-s − 0.574·16-s + 1.08·17-s − 0.274·18-s − 0.892·19-s + 0.144·20-s − 1.18·22-s + 1.25·23-s − 0.628·24-s + 0.200·25-s + 1.37·26-s − 0.192·27-s − 1.85·29-s − 0.212·30-s + 0.486·31-s − 0.615·32-s + ⋯ |
Λ(s)=(=(735s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(735s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.6142821607 |
L(21) |
≈ |
0.6142821607 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+3T |
| 5 | 1+5T |
| 7 | 1 |
good | 2 | 1+2.32T+8T2 |
| 11 | 1−52.6T+1.33e3T2 |
| 13 | 1+78.1T+2.19e3T2 |
| 17 | 1−76.1T+4.91e3T2 |
| 19 | 1+73.8T+6.85e3T2 |
| 23 | 1−137.T+1.21e4T2 |
| 29 | 1+289.T+2.43e4T2 |
| 31 | 1−83.9T+2.97e4T2 |
| 37 | 1+324.T+5.06e4T2 |
| 41 | 1+392.T+6.89e4T2 |
| 43 | 1−459.T+7.95e4T2 |
| 47 | 1+138.T+1.03e5T2 |
| 53 | 1+494.T+1.48e5T2 |
| 59 | 1−174.T+2.05e5T2 |
| 61 | 1−88.6T+2.26e5T2 |
| 67 | 1−641.T+3.00e5T2 |
| 71 | 1−672.T+3.57e5T2 |
| 73 | 1−456.T+3.89e5T2 |
| 79 | 1+604.T+4.93e5T2 |
| 83 | 1+868.T+5.71e5T2 |
| 89 | 1−126.T+7.04e5T2 |
| 97 | 1+289.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.791629285685427396301272924939, −9.299025697396090363861341555212, −8.356499894665962983358668168581, −7.36198856867049039050792492127, −6.82363541675593018287473658891, −5.39574348618124850871360967461, −4.57863605538812904309095350011, −3.57689704710759379144958574584, −1.74148627855439960545428395030, −0.53712849838396446595494277940,
0.53712849838396446595494277940, 1.74148627855439960545428395030, 3.57689704710759379144958574584, 4.57863605538812904309095350011, 5.39574348618124850871360967461, 6.82363541675593018287473658891, 7.36198856867049039050792492127, 8.356499894665962983358668168581, 9.299025697396090363861341555212, 9.791629285685427396301272924939