Properties

Label 2-735-1.1-c3-0-5
Degree $2$
Conductor $735$
Sign $1$
Analytic cond. $43.3664$
Root an. cond. $6.58531$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.32·2-s − 3·3-s − 2.57·4-s − 5·5-s + 6.98·6-s + 24.6·8-s + 9·9-s + 11.6·10-s + 52.6·11-s + 7.73·12-s − 78.1·13-s + 15·15-s − 36.7·16-s + 76.1·17-s − 20.9·18-s − 73.8·19-s + 12.8·20-s − 122.·22-s + 137.·23-s − 73.8·24-s + 25·25-s + 182.·26-s − 27·27-s − 289.·29-s − 34.9·30-s + 83.9·31-s − 111.·32-s + ⋯
L(s)  = 1  − 0.823·2-s − 0.577·3-s − 0.322·4-s − 0.447·5-s + 0.475·6-s + 1.08·8-s + 0.333·9-s + 0.368·10-s + 1.44·11-s + 0.186·12-s − 1.66·13-s + 0.258·15-s − 0.574·16-s + 1.08·17-s − 0.274·18-s − 0.892·19-s + 0.144·20-s − 1.18·22-s + 1.25·23-s − 0.628·24-s + 0.200·25-s + 1.37·26-s − 0.192·27-s − 1.85·29-s − 0.212·30-s + 0.486·31-s − 0.615·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(735\)    =    \(3 \cdot 5 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(43.3664\)
Root analytic conductor: \(6.58531\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 735,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.6142821607\)
\(L(\frac12)\) \(\approx\) \(0.6142821607\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + 3T \)
5 \( 1 + 5T \)
7 \( 1 \)
good2 \( 1 + 2.32T + 8T^{2} \)
11 \( 1 - 52.6T + 1.33e3T^{2} \)
13 \( 1 + 78.1T + 2.19e3T^{2} \)
17 \( 1 - 76.1T + 4.91e3T^{2} \)
19 \( 1 + 73.8T + 6.85e3T^{2} \)
23 \( 1 - 137.T + 1.21e4T^{2} \)
29 \( 1 + 289.T + 2.43e4T^{2} \)
31 \( 1 - 83.9T + 2.97e4T^{2} \)
37 \( 1 + 324.T + 5.06e4T^{2} \)
41 \( 1 + 392.T + 6.89e4T^{2} \)
43 \( 1 - 459.T + 7.95e4T^{2} \)
47 \( 1 + 138.T + 1.03e5T^{2} \)
53 \( 1 + 494.T + 1.48e5T^{2} \)
59 \( 1 - 174.T + 2.05e5T^{2} \)
61 \( 1 - 88.6T + 2.26e5T^{2} \)
67 \( 1 - 641.T + 3.00e5T^{2} \)
71 \( 1 - 672.T + 3.57e5T^{2} \)
73 \( 1 - 456.T + 3.89e5T^{2} \)
79 \( 1 + 604.T + 4.93e5T^{2} \)
83 \( 1 + 868.T + 5.71e5T^{2} \)
89 \( 1 - 126.T + 7.04e5T^{2} \)
97 \( 1 + 289.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.791629285685427396301272924939, −9.299025697396090363861341555212, −8.356499894665962983358668168581, −7.36198856867049039050792492127, −6.82363541675593018287473658891, −5.39574348618124850871360967461, −4.57863605538812904309095350011, −3.57689704710759379144958574584, −1.74148627855439960545428395030, −0.53712849838396446595494277940, 0.53712849838396446595494277940, 1.74148627855439960545428395030, 3.57689704710759379144958574584, 4.57863605538812904309095350011, 5.39574348618124850871360967461, 6.82363541675593018287473658891, 7.36198856867049039050792492127, 8.356499894665962983358668168581, 9.299025697396090363861341555212, 9.791629285685427396301272924939

Graph of the $Z$-function along the critical line