Properties

Label 2-735-1.1-c3-0-79
Degree $2$
Conductor $735$
Sign $-1$
Analytic cond. $43.3664$
Root an. cond. $6.58531$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·2-s + 3·3-s + 4-s + 5·5-s + 9·6-s − 21·8-s + 9·9-s + 15·10-s − 45·11-s + 3·12-s + 31·13-s + 15·15-s − 71·16-s − 96·17-s + 27·18-s − 149·19-s + 5·20-s − 135·22-s − 141·23-s − 63·24-s + 25·25-s + 93·26-s + 27·27-s + 48·29-s + 45·30-s + 178·31-s − 45·32-s + ⋯
L(s)  = 1  + 1.06·2-s + 0.577·3-s + 1/8·4-s + 0.447·5-s + 0.612·6-s − 0.928·8-s + 1/3·9-s + 0.474·10-s − 1.23·11-s + 0.0721·12-s + 0.661·13-s + 0.258·15-s − 1.10·16-s − 1.36·17-s + 0.353·18-s − 1.79·19-s + 0.0559·20-s − 1.30·22-s − 1.27·23-s − 0.535·24-s + 1/5·25-s + 0.701·26-s + 0.192·27-s + 0.307·29-s + 0.273·30-s + 1.03·31-s − 0.248·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 735 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(735\)    =    \(3 \cdot 5 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(43.3664\)
Root analytic conductor: \(6.58531\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 735,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - p T \)
5 \( 1 - p T \)
7 \( 1 \)
good2 \( 1 - 3 T + p^{3} T^{2} \)
11 \( 1 + 45 T + p^{3} T^{2} \)
13 \( 1 - 31 T + p^{3} T^{2} \)
17 \( 1 + 96 T + p^{3} T^{2} \)
19 \( 1 + 149 T + p^{3} T^{2} \)
23 \( 1 + 141 T + p^{3} T^{2} \)
29 \( 1 - 48 T + p^{3} T^{2} \)
31 \( 1 - 178 T + p^{3} T^{2} \)
37 \( 1 - 371 T + p^{3} T^{2} \)
41 \( 1 + 225 T + p^{3} T^{2} \)
43 \( 1 - 8 p T + p^{3} T^{2} \)
47 \( 1 + 375 T + p^{3} T^{2} \)
53 \( 1 + 663 T + p^{3} T^{2} \)
59 \( 1 - 60 T + p^{3} T^{2} \)
61 \( 1 + 392 T + p^{3} T^{2} \)
67 \( 1 + 280 T + p^{3} T^{2} \)
71 \( 1 - 258 T + p^{3} T^{2} \)
73 \( 1 + 578 T + p^{3} T^{2} \)
79 \( 1 - 152 T + p^{3} T^{2} \)
83 \( 1 - 432 T + p^{3} T^{2} \)
89 \( 1 - 234 T + p^{3} T^{2} \)
97 \( 1 + 1352 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.533177363541209949975476988325, −8.592782123313783476553513670388, −8.017662774947834714071640372511, −6.48373185214944751352592394510, −6.02874135821687978532105499998, −4.72481794560135905803331751494, −4.18722411899679317479048433406, −2.89422595207186455987804387232, −2.10560218382305686602904372427, 0, 2.10560218382305686602904372427, 2.89422595207186455987804387232, 4.18722411899679317479048433406, 4.72481794560135905803331751494, 6.02874135821687978532105499998, 6.48373185214944751352592394510, 8.017662774947834714071640372511, 8.592782123313783476553513670388, 9.533177363541209949975476988325

Graph of the $Z$-function along the critical line