Properties

Label 2-74-1.1-c7-0-12
Degree $2$
Conductor $74$
Sign $-1$
Analytic cond. $23.1164$
Root an. cond. $4.80796$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·2-s − 36.0·3-s + 64·4-s − 19.7·5-s + 288.·6-s − 50.9·7-s − 512·8-s − 886.·9-s + 157.·10-s + 5.17e3·11-s − 2.30e3·12-s + 4.31e3·13-s + 407.·14-s + 711.·15-s + 4.09e3·16-s + 1.40e4·17-s + 7.09e3·18-s + 2.66e4·19-s − 1.26e3·20-s + 1.83e3·21-s − 4.14e4·22-s − 7.74e4·23-s + 1.84e4·24-s − 7.77e4·25-s − 3.44e4·26-s + 1.10e5·27-s − 3.25e3·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.771·3-s + 0.5·4-s − 0.0706·5-s + 0.545·6-s − 0.0561·7-s − 0.353·8-s − 0.405·9-s + 0.0499·10-s + 1.17·11-s − 0.385·12-s + 0.544·13-s + 0.0396·14-s + 0.0544·15-s + 0.250·16-s + 0.694·17-s + 0.286·18-s + 0.891·19-s − 0.0353·20-s + 0.0432·21-s − 0.829·22-s − 1.32·23-s + 0.272·24-s − 0.995·25-s − 0.384·26-s + 1.08·27-s − 0.0280·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(74\)    =    \(2 \cdot 37\)
Sign: $-1$
Analytic conductor: \(23.1164\)
Root analytic conductor: \(4.80796\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 74,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 8T \)
37 \( 1 - 5.06e4T \)
good3 \( 1 + 36.0T + 2.18e3T^{2} \)
5 \( 1 + 19.7T + 7.81e4T^{2} \)
7 \( 1 + 50.9T + 8.23e5T^{2} \)
11 \( 1 - 5.17e3T + 1.94e7T^{2} \)
13 \( 1 - 4.31e3T + 6.27e7T^{2} \)
17 \( 1 - 1.40e4T + 4.10e8T^{2} \)
19 \( 1 - 2.66e4T + 8.93e8T^{2} \)
23 \( 1 + 7.74e4T + 3.40e9T^{2} \)
29 \( 1 + 3.31e4T + 1.72e10T^{2} \)
31 \( 1 + 1.72e5T + 2.75e10T^{2} \)
41 \( 1 + 8.46e5T + 1.94e11T^{2} \)
43 \( 1 + 3.07e5T + 2.71e11T^{2} \)
47 \( 1 + 3.22e5T + 5.06e11T^{2} \)
53 \( 1 - 1.83e6T + 1.17e12T^{2} \)
59 \( 1 + 7.97e5T + 2.48e12T^{2} \)
61 \( 1 + 6.84e5T + 3.14e12T^{2} \)
67 \( 1 + 3.79e6T + 6.06e12T^{2} \)
71 \( 1 + 3.42e5T + 9.09e12T^{2} \)
73 \( 1 - 2.64e6T + 1.10e13T^{2} \)
79 \( 1 + 2.44e6T + 1.92e13T^{2} \)
83 \( 1 - 5.61e6T + 2.71e13T^{2} \)
89 \( 1 - 8.43e6T + 4.42e13T^{2} \)
97 \( 1 + 3.40e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.97516636307086132533139138572, −11.61792304272230807525287413550, −10.32215851552829083112350510814, −9.221640083167962114200095471210, −7.975799993867005169480289000987, −6.56161858019835799145226513004, −5.55486254918469052860634700054, −3.58610015018173937621774895127, −1.48555689459506694529918385714, 0, 1.48555689459506694529918385714, 3.58610015018173937621774895127, 5.55486254918469052860634700054, 6.56161858019835799145226513004, 7.975799993867005169480289000987, 9.221640083167962114200095471210, 10.32215851552829083112350510814, 11.61792304272230807525287413550, 11.97516636307086132533139138572

Graph of the $Z$-function along the critical line