L(s) = 1 | − 8·2-s − 36.0·3-s + 64·4-s − 19.7·5-s + 288.·6-s − 50.9·7-s − 512·8-s − 886.·9-s + 157.·10-s + 5.17e3·11-s − 2.30e3·12-s + 4.31e3·13-s + 407.·14-s + 711.·15-s + 4.09e3·16-s + 1.40e4·17-s + 7.09e3·18-s + 2.66e4·19-s − 1.26e3·20-s + 1.83e3·21-s − 4.14e4·22-s − 7.74e4·23-s + 1.84e4·24-s − 7.77e4·25-s − 3.44e4·26-s + 1.10e5·27-s − 3.25e3·28-s + ⋯ |
L(s) = 1 | − 0.707·2-s − 0.771·3-s + 0.5·4-s − 0.0706·5-s + 0.545·6-s − 0.0561·7-s − 0.353·8-s − 0.405·9-s + 0.0499·10-s + 1.17·11-s − 0.385·12-s + 0.544·13-s + 0.0396·14-s + 0.0544·15-s + 0.250·16-s + 0.694·17-s + 0.286·18-s + 0.891·19-s − 0.0353·20-s + 0.0432·21-s − 0.829·22-s − 1.32·23-s + 0.272·24-s − 0.995·25-s − 0.384·26-s + 1.08·27-s − 0.0280·28-s + ⋯ |
Λ(s)=(=(74s/2ΓC(s)L(s)−Λ(8−s)
Λ(s)=(=(74s/2ΓC(s+7/2)L(s)−Λ(1−s)
Particular Values
L(4) |
= |
0 |
L(21) |
= |
0 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+8T |
| 37 | 1−5.06e4T |
good | 3 | 1+36.0T+2.18e3T2 |
| 5 | 1+19.7T+7.81e4T2 |
| 7 | 1+50.9T+8.23e5T2 |
| 11 | 1−5.17e3T+1.94e7T2 |
| 13 | 1−4.31e3T+6.27e7T2 |
| 17 | 1−1.40e4T+4.10e8T2 |
| 19 | 1−2.66e4T+8.93e8T2 |
| 23 | 1+7.74e4T+3.40e9T2 |
| 29 | 1+3.31e4T+1.72e10T2 |
| 31 | 1+1.72e5T+2.75e10T2 |
| 41 | 1+8.46e5T+1.94e11T2 |
| 43 | 1+3.07e5T+2.71e11T2 |
| 47 | 1+3.22e5T+5.06e11T2 |
| 53 | 1−1.83e6T+1.17e12T2 |
| 59 | 1+7.97e5T+2.48e12T2 |
| 61 | 1+6.84e5T+3.14e12T2 |
| 67 | 1+3.79e6T+6.06e12T2 |
| 71 | 1+3.42e5T+9.09e12T2 |
| 73 | 1−2.64e6T+1.10e13T2 |
| 79 | 1+2.44e6T+1.92e13T2 |
| 83 | 1−5.61e6T+2.71e13T2 |
| 89 | 1−8.43e6T+4.42e13T2 |
| 97 | 1+3.40e6T+8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.97516636307086132533139138572, −11.61792304272230807525287413550, −10.32215851552829083112350510814, −9.221640083167962114200095471210, −7.975799993867005169480289000987, −6.56161858019835799145226513004, −5.55486254918469052860634700054, −3.58610015018173937621774895127, −1.48555689459506694529918385714, 0,
1.48555689459506694529918385714, 3.58610015018173937621774895127, 5.55486254918469052860634700054, 6.56161858019835799145226513004, 7.975799993867005169480289000987, 9.221640083167962114200095471210, 10.32215851552829083112350510814, 11.61792304272230807525287413550, 11.97516636307086132533139138572