Properties

Label 2-74-1.1-c7-0-3
Degree $2$
Conductor $74$
Sign $1$
Analytic cond. $23.1164$
Root an. cond. $4.80796$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 8·2-s − 53.5·3-s + 64·4-s − 314.·5-s − 428.·6-s − 1.16e3·7-s + 512·8-s + 675.·9-s − 2.51e3·10-s + 3.43e3·11-s − 3.42e3·12-s + 1.09e4·13-s − 9.31e3·14-s + 1.68e4·15-s + 4.09e3·16-s − 6.91e3·17-s + 5.40e3·18-s + 3.52e3·19-s − 2.01e4·20-s + 6.22e4·21-s + 2.74e4·22-s − 5.43e4·23-s − 2.73e4·24-s + 2.10e4·25-s + 8.73e4·26-s + 8.08e4·27-s − 7.45e4·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 1.14·3-s + 0.5·4-s − 1.12·5-s − 0.809·6-s − 1.28·7-s + 0.353·8-s + 0.309·9-s − 0.796·10-s + 0.778·11-s − 0.572·12-s + 1.37·13-s − 0.907·14-s + 1.28·15-s + 0.250·16-s − 0.341·17-s + 0.218·18-s + 0.117·19-s − 0.563·20-s + 1.46·21-s + 0.550·22-s − 0.931·23-s − 0.404·24-s + 0.269·25-s + 0.974·26-s + 0.790·27-s − 0.641·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(74\)    =    \(2 \cdot 37\)
Sign: $1$
Analytic conductor: \(23.1164\)
Root analytic conductor: \(4.80796\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 74,\ (\ :7/2),\ 1)\)

Particular Values

\(L(4)\) \(\approx\) \(1.235532185\)
\(L(\frac12)\) \(\approx\) \(1.235532185\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 8T \)
37 \( 1 - 5.06e4T \)
good3 \( 1 + 53.5T + 2.18e3T^{2} \)
5 \( 1 + 314.T + 7.81e4T^{2} \)
7 \( 1 + 1.16e3T + 8.23e5T^{2} \)
11 \( 1 - 3.43e3T + 1.94e7T^{2} \)
13 \( 1 - 1.09e4T + 6.27e7T^{2} \)
17 \( 1 + 6.91e3T + 4.10e8T^{2} \)
19 \( 1 - 3.52e3T + 8.93e8T^{2} \)
23 \( 1 + 5.43e4T + 3.40e9T^{2} \)
29 \( 1 - 1.58e5T + 1.72e10T^{2} \)
31 \( 1 - 2.93e5T + 2.75e10T^{2} \)
41 \( 1 - 4.79e5T + 1.94e11T^{2} \)
43 \( 1 + 6.00e5T + 2.71e11T^{2} \)
47 \( 1 + 8.32e5T + 5.06e11T^{2} \)
53 \( 1 - 3.81e5T + 1.17e12T^{2} \)
59 \( 1 - 1.37e6T + 2.48e12T^{2} \)
61 \( 1 + 1.85e6T + 3.14e12T^{2} \)
67 \( 1 - 3.98e6T + 6.06e12T^{2} \)
71 \( 1 - 3.66e5T + 9.09e12T^{2} \)
73 \( 1 - 1.57e6T + 1.10e13T^{2} \)
79 \( 1 + 3.09e6T + 1.92e13T^{2} \)
83 \( 1 + 7.25e6T + 2.71e13T^{2} \)
89 \( 1 + 1.06e6T + 4.42e13T^{2} \)
97 \( 1 - 1.53e7T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.89913779677346345309491485500, −11.88320978913946296517962023016, −11.39717956886834694264403059226, −10.12233235668272731383308318420, −8.372338857126345129548462308586, −6.63877062187775463206450503666, −6.10526396147929208030885755746, −4.39751728168748794323009539412, −3.32615097875466929924972285720, −0.69880199121176732574555336500, 0.69880199121176732574555336500, 3.32615097875466929924972285720, 4.39751728168748794323009539412, 6.10526396147929208030885755746, 6.63877062187775463206450503666, 8.372338857126345129548462308586, 10.12233235668272731383308318420, 11.39717956886834694264403059226, 11.88320978913946296517962023016, 12.89913779677346345309491485500

Graph of the $Z$-function along the critical line