Properties

Label 2-74-1.1-c7-0-6
Degree $2$
Conductor $74$
Sign $-1$
Analytic cond. $23.1164$
Root an. cond. $4.80796$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·2-s − 92.6·3-s + 64·4-s − 162.·5-s + 741.·6-s − 829.·7-s − 512·8-s + 6.39e3·9-s + 1.29e3·10-s − 2.49e3·11-s − 5.93e3·12-s + 1.49e4·13-s + 6.63e3·14-s + 1.50e4·15-s + 4.09e3·16-s + 2.05e4·17-s − 5.11e4·18-s − 2.85e4·19-s − 1.03e4·20-s + 7.68e4·21-s + 1.99e4·22-s + 7.30e4·23-s + 4.74e4·24-s − 5.17e4·25-s − 1.19e5·26-s − 3.90e5·27-s − 5.31e4·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.98·3-s + 0.5·4-s − 0.580·5-s + 1.40·6-s − 0.914·7-s − 0.353·8-s + 2.92·9-s + 0.410·10-s − 0.564·11-s − 0.990·12-s + 1.88·13-s + 0.646·14-s + 1.15·15-s + 0.250·16-s + 1.01·17-s − 2.06·18-s − 0.955·19-s − 0.290·20-s + 1.81·21-s + 0.399·22-s + 1.25·23-s + 0.700·24-s − 0.662·25-s − 1.33·26-s − 3.81·27-s − 0.457·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(74\)    =    \(2 \cdot 37\)
Sign: $-1$
Analytic conductor: \(23.1164\)
Root analytic conductor: \(4.80796\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 74,\ (\ :7/2),\ -1)\)

Particular Values

\(L(4)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 8T \)
37 \( 1 - 5.06e4T \)
good3 \( 1 + 92.6T + 2.18e3T^{2} \)
5 \( 1 + 162.T + 7.81e4T^{2} \)
7 \( 1 + 829.T + 8.23e5T^{2} \)
11 \( 1 + 2.49e3T + 1.94e7T^{2} \)
13 \( 1 - 1.49e4T + 6.27e7T^{2} \)
17 \( 1 - 2.05e4T + 4.10e8T^{2} \)
19 \( 1 + 2.85e4T + 8.93e8T^{2} \)
23 \( 1 - 7.30e4T + 3.40e9T^{2} \)
29 \( 1 + 6.09e4T + 1.72e10T^{2} \)
31 \( 1 + 1.54e5T + 2.75e10T^{2} \)
41 \( 1 - 5.29e5T + 1.94e11T^{2} \)
43 \( 1 - 5.65e5T + 2.71e11T^{2} \)
47 \( 1 - 7.15e5T + 5.06e11T^{2} \)
53 \( 1 + 1.20e6T + 1.17e12T^{2} \)
59 \( 1 + 1.10e6T + 2.48e12T^{2} \)
61 \( 1 + 8.92e5T + 3.14e12T^{2} \)
67 \( 1 - 3.77e6T + 6.06e12T^{2} \)
71 \( 1 - 6.52e5T + 9.09e12T^{2} \)
73 \( 1 + 1.52e6T + 1.10e13T^{2} \)
79 \( 1 - 3.25e6T + 1.92e13T^{2} \)
83 \( 1 - 1.69e6T + 2.71e13T^{2} \)
89 \( 1 - 7.90e5T + 4.42e13T^{2} \)
97 \( 1 + 1.20e7T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.39126822931539837696067040914, −11.06532397588645493670188159017, −10.77649359342631813209521888164, −9.426949820161535778638724918530, −7.66185920822056925424410226225, −6.46064230065258186579070048093, −5.64506388419974055478535271416, −3.85117549411986779418492347141, −1.09531673000685192307210480991, 0, 1.09531673000685192307210480991, 3.85117549411986779418492347141, 5.64506388419974055478535271416, 6.46064230065258186579070048093, 7.66185920822056925424410226225, 9.426949820161535778638724918530, 10.77649359342631813209521888164, 11.06532397588645493670188159017, 12.39126822931539837696067040914

Graph of the $Z$-function along the critical line