L(s) = 1 | + (4 − 6.92i)2-s + (8.02 + 13.9i)3-s + (−31.9 − 55.4i)4-s + (−60.7 − 105. i)5-s + 128.·6-s + (462. + 801. i)7-s − 511.·8-s + (964. − 1.67e3i)9-s − 972.·10-s + 1.63e3·11-s + (513. − 890. i)12-s + (1.56e3 + 2.71e3i)13-s + 7.40e3·14-s + (975. − 1.69e3i)15-s + (−2.04e3 + 3.54e3i)16-s + (8.23e3 − 1.42e4i)17-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (0.171 + 0.297i)3-s + (−0.249 − 0.433i)4-s + (−0.217 − 0.376i)5-s + 0.242·6-s + (0.509 + 0.883i)7-s − 0.353·8-s + (0.441 − 0.763i)9-s − 0.307·10-s + 0.369·11-s + (0.0858 − 0.148i)12-s + (0.197 + 0.342i)13-s + 0.721·14-s + (0.0746 − 0.129i)15-s + (−0.125 + 0.216i)16-s + (0.406 − 0.704i)17-s + ⋯ |
Λ(s)=(=(74s/2ΓC(s)L(s)(0.0760+0.997i)Λ(8−s)
Λ(s)=(=(74s/2ΓC(s+7/2)L(s)(0.0760+0.997i)Λ(1−s)
Degree: |
2 |
Conductor: |
74
= 2⋅37
|
Sign: |
0.0760+0.997i
|
Analytic conductor: |
23.1164 |
Root analytic conductor: |
4.80796 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ74(47,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 74, ( :7/2), 0.0760+0.997i)
|
Particular Values
L(4) |
≈ |
1.79071−1.65932i |
L(21) |
≈ |
1.79071−1.65932i |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−4+6.92i)T |
| 37 | 1+(−2.18e4+3.07e5i)T |
good | 3 | 1+(−8.02−13.9i)T+(−1.09e3+1.89e3i)T2 |
| 5 | 1+(60.7+105.i)T+(−3.90e4+6.76e4i)T2 |
| 7 | 1+(−462.−801.i)T+(−4.11e5+7.13e5i)T2 |
| 11 | 1−1.63e3T+1.94e7T2 |
| 13 | 1+(−1.56e3−2.71e3i)T+(−3.13e7+5.43e7i)T2 |
| 17 | 1+(−8.23e3+1.42e4i)T+(−2.05e8−3.55e8i)T2 |
| 19 | 1+(2.54e4+4.41e4i)T+(−4.46e8+7.74e8i)T2 |
| 23 | 1−6.04e4T+3.40e9T2 |
| 29 | 1+9.97e4T+1.72e10T2 |
| 31 | 1−1.44e5T+2.75e10T2 |
| 41 | 1+(4.04e5+7.00e5i)T+(−9.73e10+1.68e11i)T2 |
| 43 | 1+7.00e4T+2.71e11T2 |
| 47 | 1−7.04e5T+5.06e11T2 |
| 53 | 1+(5.73e5−9.93e5i)T+(−5.87e11−1.01e12i)T2 |
| 59 | 1+(4.76e5−8.25e5i)T+(−1.24e12−2.15e12i)T2 |
| 61 | 1+(−6.70e5−1.16e6i)T+(−1.57e12+2.72e12i)T2 |
| 67 | 1+(1.01e6+1.75e6i)T+(−3.03e12+5.24e12i)T2 |
| 71 | 1+(−2.52e6−4.37e6i)T+(−4.54e12+7.87e12i)T2 |
| 73 | 1−4.62e6T+1.10e13T2 |
| 79 | 1+(−2.53e6−4.39e6i)T+(−9.60e12+1.66e13i)T2 |
| 83 | 1+(6.51e5−1.12e6i)T+(−1.35e13−2.35e13i)T2 |
| 89 | 1+(6.04e6−1.04e7i)T+(−2.21e13−3.83e13i)T2 |
| 97 | 1−3.50e6T+8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.62296287078764406833572777515, −11.88914477434364765422311055413, −10.83540009075327999076832236972, −9.312799961865092770033109283688, −8.740067906462451696788841134894, −6.80575391268906746177841284818, −5.19548401117202969505329463247, −4.07944344364412496133671769682, −2.51286261732955357907021711219, −0.822852523879441203252774627729,
1.45448838406535358379585285857, 3.52313703828169779567885446959, 4.80337884519493292068749385033, 6.41961363676768307658843964211, 7.56984192011830577051082987372, 8.302042095644162646701019478083, 10.15642305847020376768311871654, 11.14195540636219631439488757461, 12.63053086042851861937344700366, 13.50074370807666433401864032363