L(s) = 1 | + (4 − 6.92i)2-s + (8.02 + 13.9i)3-s + (−31.9 − 55.4i)4-s + (−60.7 − 105. i)5-s + 128.·6-s + (462. + 801. i)7-s − 511.·8-s + (964. − 1.67e3i)9-s − 972.·10-s + 1.63e3·11-s + (513. − 890. i)12-s + (1.56e3 + 2.71e3i)13-s + 7.40e3·14-s + (975. − 1.69e3i)15-s + (−2.04e3 + 3.54e3i)16-s + (8.23e3 − 1.42e4i)17-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (0.171 + 0.297i)3-s + (−0.249 − 0.433i)4-s + (−0.217 − 0.376i)5-s + 0.242·6-s + (0.509 + 0.883i)7-s − 0.353·8-s + (0.441 − 0.763i)9-s − 0.307·10-s + 0.369·11-s + (0.0858 − 0.148i)12-s + (0.197 + 0.342i)13-s + 0.721·14-s + (0.0746 − 0.129i)15-s + (−0.125 + 0.216i)16-s + (0.406 − 0.704i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.0760 + 0.997i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (0.0760 + 0.997i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(1.79071 - 1.65932i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.79071 - 1.65932i\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-4 + 6.92i)T \) |
| 37 | \( 1 + (-2.18e4 + 3.07e5i)T \) |
good | 3 | \( 1 + (-8.02 - 13.9i)T + (-1.09e3 + 1.89e3i)T^{2} \) |
| 5 | \( 1 + (60.7 + 105. i)T + (-3.90e4 + 6.76e4i)T^{2} \) |
| 7 | \( 1 + (-462. - 801. i)T + (-4.11e5 + 7.13e5i)T^{2} \) |
| 11 | \( 1 - 1.63e3T + 1.94e7T^{2} \) |
| 13 | \( 1 + (-1.56e3 - 2.71e3i)T + (-3.13e7 + 5.43e7i)T^{2} \) |
| 17 | \( 1 + (-8.23e3 + 1.42e4i)T + (-2.05e8 - 3.55e8i)T^{2} \) |
| 19 | \( 1 + (2.54e4 + 4.41e4i)T + (-4.46e8 + 7.74e8i)T^{2} \) |
| 23 | \( 1 - 6.04e4T + 3.40e9T^{2} \) |
| 29 | \( 1 + 9.97e4T + 1.72e10T^{2} \) |
| 31 | \( 1 - 1.44e5T + 2.75e10T^{2} \) |
| 41 | \( 1 + (4.04e5 + 7.00e5i)T + (-9.73e10 + 1.68e11i)T^{2} \) |
| 43 | \( 1 + 7.00e4T + 2.71e11T^{2} \) |
| 47 | \( 1 - 7.04e5T + 5.06e11T^{2} \) |
| 53 | \( 1 + (5.73e5 - 9.93e5i)T + (-5.87e11 - 1.01e12i)T^{2} \) |
| 59 | \( 1 + (4.76e5 - 8.25e5i)T + (-1.24e12 - 2.15e12i)T^{2} \) |
| 61 | \( 1 + (-6.70e5 - 1.16e6i)T + (-1.57e12 + 2.72e12i)T^{2} \) |
| 67 | \( 1 + (1.01e6 + 1.75e6i)T + (-3.03e12 + 5.24e12i)T^{2} \) |
| 71 | \( 1 + (-2.52e6 - 4.37e6i)T + (-4.54e12 + 7.87e12i)T^{2} \) |
| 73 | \( 1 - 4.62e6T + 1.10e13T^{2} \) |
| 79 | \( 1 + (-2.53e6 - 4.39e6i)T + (-9.60e12 + 1.66e13i)T^{2} \) |
| 83 | \( 1 + (6.51e5 - 1.12e6i)T + (-1.35e13 - 2.35e13i)T^{2} \) |
| 89 | \( 1 + (6.04e6 - 1.04e7i)T + (-2.21e13 - 3.83e13i)T^{2} \) |
| 97 | \( 1 - 3.50e6T + 8.07e13T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.62296287078764406833572777515, −11.88914477434364765422311055413, −10.83540009075327999076832236972, −9.312799961865092770033109283688, −8.740067906462451696788841134894, −6.80575391268906746177841284818, −5.19548401117202969505329463247, −4.07944344364412496133671769682, −2.51286261732955357907021711219, −0.822852523879441203252774627729,
1.45448838406535358379585285857, 3.52313703828169779567885446959, 4.80337884519493292068749385033, 6.41961363676768307658843964211, 7.56984192011830577051082987372, 8.302042095644162646701019478083, 10.15642305847020376768311871654, 11.14195540636219631439488757461, 12.63053086042851861937344700366, 13.50074370807666433401864032363