L(s) = 1 | + (4 − 6.92i)2-s + (27.4 + 47.5i)3-s + (−31.9 − 55.4i)4-s + (8.21 + 14.2i)5-s + 439.·6-s + (−392. − 679. i)7-s − 511.·8-s + (−412. + 713. i)9-s + 131.·10-s + 6.02e3·11-s + (1.75e3 − 3.04e3i)12-s + (−6.90e3 − 1.19e4i)13-s − 6.28e3·14-s + (−450. + 781. i)15-s + (−2.04e3 + 3.54e3i)16-s + (6.83e3 − 1.18e4i)17-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (0.586 + 1.01i)3-s + (−0.249 − 0.433i)4-s + (0.0294 + 0.0509i)5-s + 0.829·6-s + (−0.432 − 0.749i)7-s − 0.353·8-s + (−0.188 + 0.326i)9-s + 0.0415·10-s + 1.36·11-s + (0.293 − 0.508i)12-s + (−0.872 − 1.51i)13-s − 0.611·14-s + (−0.0345 + 0.0597i)15-s + (−0.125 + 0.216i)16-s + (0.337 − 0.584i)17-s + ⋯ |
Λ(s)=(=(74s/2ΓC(s)L(s)(0.476+0.879i)Λ(8−s)
Λ(s)=(=(74s/2ΓC(s+7/2)L(s)(0.476+0.879i)Λ(1−s)
Degree: |
2 |
Conductor: |
74
= 2⋅37
|
Sign: |
0.476+0.879i
|
Analytic conductor: |
23.1164 |
Root analytic conductor: |
4.80796 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ74(47,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 74, ( :7/2), 0.476+0.879i)
|
Particular Values
L(4) |
≈ |
2.32479−1.38452i |
L(21) |
≈ |
2.32479−1.38452i |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−4+6.92i)T |
| 37 | 1+(1.05e5+2.89e5i)T |
good | 3 | 1+(−27.4−47.5i)T+(−1.09e3+1.89e3i)T2 |
| 5 | 1+(−8.21−14.2i)T+(−3.90e4+6.76e4i)T2 |
| 7 | 1+(392.+679.i)T+(−4.11e5+7.13e5i)T2 |
| 11 | 1−6.02e3T+1.94e7T2 |
| 13 | 1+(6.90e3+1.19e4i)T+(−3.13e7+5.43e7i)T2 |
| 17 | 1+(−6.83e3+1.18e4i)T+(−2.05e8−3.55e8i)T2 |
| 19 | 1+(−2.00e4−3.46e4i)T+(−4.46e8+7.74e8i)T2 |
| 23 | 1−7.04e4T+3.40e9T2 |
| 29 | 1−1.94e5T+1.72e10T2 |
| 31 | 1+2.34e5T+2.75e10T2 |
| 41 | 1+(1.18e5+2.05e5i)T+(−9.73e10+1.68e11i)T2 |
| 43 | 1+8.33e5T+2.71e11T2 |
| 47 | 1+1.45e5T+5.06e11T2 |
| 53 | 1+(−5.42e5+9.40e5i)T+(−5.87e11−1.01e12i)T2 |
| 59 | 1+(−1.74e5+3.02e5i)T+(−1.24e12−2.15e12i)T2 |
| 61 | 1+(−1.01e6−1.76e6i)T+(−1.57e12+2.72e12i)T2 |
| 67 | 1+(−1.08e6−1.88e6i)T+(−3.03e12+5.24e12i)T2 |
| 71 | 1+(−1.65e6−2.87e6i)T+(−4.54e12+7.87e12i)T2 |
| 73 | 1+6.03e6T+1.10e13T2 |
| 79 | 1+(1.59e6+2.76e6i)T+(−9.60e12+1.66e13i)T2 |
| 83 | 1+(4.32e6−7.48e6i)T+(−1.35e13−2.35e13i)T2 |
| 89 | 1+(−5.00e6+8.66e6i)T+(−2.21e13−3.83e13i)T2 |
| 97 | 1+1.05e7T+8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.90607023130519995301399565422, −11.87264347584420175303701326718, −10.31612018141555910341550480890, −9.939138340100285604684442473839, −8.731073428067965931674959884640, −7.01307188014914454903071901276, −5.20250502720281223881223604658, −3.85793815915789452736238181697, −3.05056615658713228902102674716, −0.853656670543043251150904843106,
1.51965057226700115378126088352, 3.04582672799227104412149028817, 4.85133164697781927387077920642, 6.61281999392635242634230364253, 7.10768899868243309937872561407, 8.698116354476087081192345411931, 9.366144160792028117041069351232, 11.62238910873377996261121693283, 12.43613169729054438852588780212, 13.43283785243265705569541900226