Properties

Label 2-74-37.10-c7-0-15
Degree $2$
Conductor $74$
Sign $-0.926 + 0.377i$
Analytic cond. $23.1164$
Root an. cond. $4.80796$
Motivic weight $7$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−4 + 6.92i)2-s + (−13.7 − 23.8i)3-s + (−31.9 − 55.4i)4-s + (−121. − 210. i)5-s + 220.·6-s + (208. + 360. i)7-s + 511.·8-s + (715. − 1.23e3i)9-s + 1.94e3·10-s + 4.33e3·11-s + (−880. + 1.52e3i)12-s + (−3.13e3 − 5.43e3i)13-s − 3.32e3·14-s + (−3.33e3 + 5.78e3i)15-s + (−2.04e3 + 3.54e3i)16-s + (−2.31e3 + 4.01e3i)17-s + ⋯
L(s)  = 1  + (−0.353 + 0.612i)2-s + (−0.294 − 0.509i)3-s + (−0.249 − 0.433i)4-s + (−0.434 − 0.752i)5-s + 0.415·6-s + (0.229 + 0.397i)7-s + 0.353·8-s + (0.327 − 0.566i)9-s + 0.614·10-s + 0.983·11-s + (−0.147 + 0.254i)12-s + (−0.395 − 0.685i)13-s − 0.324·14-s + (−0.255 + 0.442i)15-s + (−0.125 + 0.216i)16-s + (−0.114 + 0.198i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.926 + 0.377i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.926 + 0.377i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(74\)    =    \(2 \cdot 37\)
Sign: $-0.926 + 0.377i$
Analytic conductor: \(23.1164\)
Root analytic conductor: \(4.80796\)
Motivic weight: \(7\)
Rational: no
Arithmetic: yes
Character: $\chi_{74} (47, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 74,\ (\ :7/2),\ -0.926 + 0.377i)\)

Particular Values

\(L(4)\) \(\approx\) \(0.0918907 - 0.469389i\)
\(L(\frac12)\) \(\approx\) \(0.0918907 - 0.469389i\)
\(L(\frac{9}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + (4 - 6.92i)T \)
37 \( 1 + (2.99e5 - 7.31e4i)T \)
good3 \( 1 + (13.7 + 23.8i)T + (-1.09e3 + 1.89e3i)T^{2} \)
5 \( 1 + (121. + 210. i)T + (-3.90e4 + 6.76e4i)T^{2} \)
7 \( 1 + (-208. - 360. i)T + (-4.11e5 + 7.13e5i)T^{2} \)
11 \( 1 - 4.33e3T + 1.94e7T^{2} \)
13 \( 1 + (3.13e3 + 5.43e3i)T + (-3.13e7 + 5.43e7i)T^{2} \)
17 \( 1 + (2.31e3 - 4.01e3i)T + (-2.05e8 - 3.55e8i)T^{2} \)
19 \( 1 + (-5.77e3 - 1.00e4i)T + (-4.46e8 + 7.74e8i)T^{2} \)
23 \( 1 + 1.08e5T + 3.40e9T^{2} \)
29 \( 1 - 1.09e5T + 1.72e10T^{2} \)
31 \( 1 + 1.25e5T + 2.75e10T^{2} \)
41 \( 1 + (2.83e5 + 4.91e5i)T + (-9.73e10 + 1.68e11i)T^{2} \)
43 \( 1 + 4.19e5T + 2.71e11T^{2} \)
47 \( 1 - 1.90e4T + 5.06e11T^{2} \)
53 \( 1 + (4.24e5 - 7.35e5i)T + (-5.87e11 - 1.01e12i)T^{2} \)
59 \( 1 + (1.49e6 - 2.58e6i)T + (-1.24e12 - 2.15e12i)T^{2} \)
61 \( 1 + (-1.49e5 - 2.58e5i)T + (-1.57e12 + 2.72e12i)T^{2} \)
67 \( 1 + (4.21e5 + 7.29e5i)T + (-3.03e12 + 5.24e12i)T^{2} \)
71 \( 1 + (-9.93e5 - 1.72e6i)T + (-4.54e12 + 7.87e12i)T^{2} \)
73 \( 1 + 1.97e6T + 1.10e13T^{2} \)
79 \( 1 + (-3.92e6 - 6.79e6i)T + (-9.60e12 + 1.66e13i)T^{2} \)
83 \( 1 + (-7.76e5 + 1.34e6i)T + (-1.35e13 - 2.35e13i)T^{2} \)
89 \( 1 + (-1.28e6 + 2.22e6i)T + (-2.21e13 - 3.83e13i)T^{2} \)
97 \( 1 - 6.18e6T + 8.07e13T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.33399219982534323733263523611, −11.98310505485932239545782716263, −10.18450862679698061454208039797, −8.951729656748321263020902900231, −7.990738530653003916142114102146, −6.73363331917225936855429062474, −5.56700556866558605427578971815, −4.05524484062806988367497785786, −1.50389217266244190050390878927, −0.19870318377841487995455244270, 1.80349279069331571907097187564, 3.60202122850075881896939314543, 4.69075583361971147633901665449, 6.72393908685735298408586584090, 7.87608447420464397679000527137, 9.410673124927170393699457326219, 10.38794496829533104637433400315, 11.28673059866810894537941045978, 12.06995292009200113678006369471, 13.67572867705205614826767996495

Graph of the $Z$-function along the critical line