L(s) = 1 | + (−4 + 6.92i)2-s + (−13.7 − 23.8i)3-s + (−31.9 − 55.4i)4-s + (−121. − 210. i)5-s + 220.·6-s + (208. + 360. i)7-s + 511.·8-s + (715. − 1.23e3i)9-s + 1.94e3·10-s + 4.33e3·11-s + (−880. + 1.52e3i)12-s + (−3.13e3 − 5.43e3i)13-s − 3.32e3·14-s + (−3.33e3 + 5.78e3i)15-s + (−2.04e3 + 3.54e3i)16-s + (−2.31e3 + 4.01e3i)17-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (−0.294 − 0.509i)3-s + (−0.249 − 0.433i)4-s + (−0.434 − 0.752i)5-s + 0.415·6-s + (0.229 + 0.397i)7-s + 0.353·8-s + (0.327 − 0.566i)9-s + 0.614·10-s + 0.983·11-s + (−0.147 + 0.254i)12-s + (−0.395 − 0.685i)13-s − 0.324·14-s + (−0.255 + 0.442i)15-s + (−0.125 + 0.216i)16-s + (−0.114 + 0.198i)17-s + ⋯ |
Λ(s)=(=(74s/2ΓC(s)L(s)(−0.926+0.377i)Λ(8−s)
Λ(s)=(=(74s/2ΓC(s+7/2)L(s)(−0.926+0.377i)Λ(1−s)
Degree: |
2 |
Conductor: |
74
= 2⋅37
|
Sign: |
−0.926+0.377i
|
Analytic conductor: |
23.1164 |
Root analytic conductor: |
4.80796 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ74(47,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 74, ( :7/2), −0.926+0.377i)
|
Particular Values
L(4) |
≈ |
0.0918907−0.469389i |
L(21) |
≈ |
0.0918907−0.469389i |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(4−6.92i)T |
| 37 | 1+(2.99e5−7.31e4i)T |
good | 3 | 1+(13.7+23.8i)T+(−1.09e3+1.89e3i)T2 |
| 5 | 1+(121.+210.i)T+(−3.90e4+6.76e4i)T2 |
| 7 | 1+(−208.−360.i)T+(−4.11e5+7.13e5i)T2 |
| 11 | 1−4.33e3T+1.94e7T2 |
| 13 | 1+(3.13e3+5.43e3i)T+(−3.13e7+5.43e7i)T2 |
| 17 | 1+(2.31e3−4.01e3i)T+(−2.05e8−3.55e8i)T2 |
| 19 | 1+(−5.77e3−1.00e4i)T+(−4.46e8+7.74e8i)T2 |
| 23 | 1+1.08e5T+3.40e9T2 |
| 29 | 1−1.09e5T+1.72e10T2 |
| 31 | 1+1.25e5T+2.75e10T2 |
| 41 | 1+(2.83e5+4.91e5i)T+(−9.73e10+1.68e11i)T2 |
| 43 | 1+4.19e5T+2.71e11T2 |
| 47 | 1−1.90e4T+5.06e11T2 |
| 53 | 1+(4.24e5−7.35e5i)T+(−5.87e11−1.01e12i)T2 |
| 59 | 1+(1.49e6−2.58e6i)T+(−1.24e12−2.15e12i)T2 |
| 61 | 1+(−1.49e5−2.58e5i)T+(−1.57e12+2.72e12i)T2 |
| 67 | 1+(4.21e5+7.29e5i)T+(−3.03e12+5.24e12i)T2 |
| 71 | 1+(−9.93e5−1.72e6i)T+(−4.54e12+7.87e12i)T2 |
| 73 | 1+1.97e6T+1.10e13T2 |
| 79 | 1+(−3.92e6−6.79e6i)T+(−9.60e12+1.66e13i)T2 |
| 83 | 1+(−7.76e5+1.34e6i)T+(−1.35e13−2.35e13i)T2 |
| 89 | 1+(−1.28e6+2.22e6i)T+(−2.21e13−3.83e13i)T2 |
| 97 | 1−6.18e6T+8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.33399219982534323733263523611, −11.98310505485932239545782716263, −10.18450862679698061454208039797, −8.951729656748321263020902900231, −7.990738530653003916142114102146, −6.73363331917225936855429062474, −5.56700556866558605427578971815, −4.05524484062806988367497785786, −1.50389217266244190050390878927, −0.19870318377841487995455244270,
1.80349279069331571907097187564, 3.60202122850075881896939314543, 4.69075583361971147633901665449, 6.72393908685735298408586584090, 7.87608447420464397679000527137, 9.410673124927170393699457326219, 10.38794496829533104637433400315, 11.28673059866810894537941045978, 12.06995292009200113678006369471, 13.67572867705205614826767996495