L(s) = 1 | + (4 − 6.92i)2-s + (34.1 + 59.2i)3-s + (−31.9 − 55.4i)4-s + (13.0 + 22.6i)5-s + 546.·6-s + (−837. − 1.45e3i)7-s − 511.·8-s + (−1.24e3 + 2.15e3i)9-s + 208.·10-s − 5.50e3·11-s + (2.18e3 − 3.78e3i)12-s + (3.58e3 + 6.21e3i)13-s − 1.34e4·14-s + (−892. + 1.54e3i)15-s + (−2.04e3 + 3.54e3i)16-s + (509. − 883. i)17-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (0.730 + 1.26i)3-s + (−0.249 − 0.433i)4-s + (0.0466 + 0.0808i)5-s + 1.03·6-s + (−0.923 − 1.59i)7-s − 0.353·8-s + (−0.568 + 0.985i)9-s + 0.0660·10-s − 1.24·11-s + (0.365 − 0.633i)12-s + (0.453 + 0.784i)13-s − 1.30·14-s + (−0.0682 + 0.118i)15-s + (−0.125 + 0.216i)16-s + (0.0251 − 0.0435i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.864 + 0.502i)\, \overline{\Lambda}(8-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s+7/2) \, L(s)\cr =\mathstrut & (-0.864 + 0.502i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(4)\) |
\(\approx\) |
\(0.229878 - 0.852599i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.229878 - 0.852599i\) |
\(L(\frac{9}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-4 + 6.92i)T \) |
| 37 | \( 1 + (-2.86e5 + 1.14e5i)T \) |
good | 3 | \( 1 + (-34.1 - 59.2i)T + (-1.09e3 + 1.89e3i)T^{2} \) |
| 5 | \( 1 + (-13.0 - 22.6i)T + (-3.90e4 + 6.76e4i)T^{2} \) |
| 7 | \( 1 + (837. + 1.45e3i)T + (-4.11e5 + 7.13e5i)T^{2} \) |
| 11 | \( 1 + 5.50e3T + 1.94e7T^{2} \) |
| 13 | \( 1 + (-3.58e3 - 6.21e3i)T + (-3.13e7 + 5.43e7i)T^{2} \) |
| 17 | \( 1 + (-509. + 883. i)T + (-2.05e8 - 3.55e8i)T^{2} \) |
| 19 | \( 1 + (2.69e4 + 4.67e4i)T + (-4.46e8 + 7.74e8i)T^{2} \) |
| 23 | \( 1 + 1.06e5T + 3.40e9T^{2} \) |
| 29 | \( 1 + 6.96e4T + 1.72e10T^{2} \) |
| 31 | \( 1 - 1.61e5T + 2.75e10T^{2} \) |
| 41 | \( 1 + (-3.50e4 - 6.06e4i)T + (-9.73e10 + 1.68e11i)T^{2} \) |
| 43 | \( 1 + 5.96e5T + 2.71e11T^{2} \) |
| 47 | \( 1 + 1.09e6T + 5.06e11T^{2} \) |
| 53 | \( 1 + (-1.79e5 + 3.10e5i)T + (-5.87e11 - 1.01e12i)T^{2} \) |
| 59 | \( 1 + (-1.38e6 + 2.39e6i)T + (-1.24e12 - 2.15e12i)T^{2} \) |
| 61 | \( 1 + (-1.38e6 - 2.40e6i)T + (-1.57e12 + 2.72e12i)T^{2} \) |
| 67 | \( 1 + (-1.30e6 - 2.25e6i)T + (-3.03e12 + 5.24e12i)T^{2} \) |
| 71 | \( 1 + (1.63e5 + 2.83e5i)T + (-4.54e12 + 7.87e12i)T^{2} \) |
| 73 | \( 1 + 2.90e6T + 1.10e13T^{2} \) |
| 79 | \( 1 + (-3.32e5 - 5.76e5i)T + (-9.60e12 + 1.66e13i)T^{2} \) |
| 83 | \( 1 + (-1.29e6 + 2.24e6i)T + (-1.35e13 - 2.35e13i)T^{2} \) |
| 89 | \( 1 + (2.19e6 - 3.79e6i)T + (-2.21e13 - 3.83e13i)T^{2} \) |
| 97 | \( 1 - 1.04e6T + 8.07e13T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.05885652368321602763072045436, −11.17940212893923547643854832067, −10.23547655600936257405001763470, −9.774447699959732133396469876034, −8.339638234860288968544222036435, −6.61681056783653010291888318701, −4.60105894034061668956106717707, −3.85322733940656867632648441464, −2.62905330795704709210735565687, −0.22376852600119187155226881562,
2.10316931988818556844018319946, 3.20062714827599164440517657547, 5.61408462412428829432984451682, 6.38410084061066073926577466461, 8.002045301139197254474714184916, 8.401782421455513318649939752053, 9.944431478748567948985240383450, 12.05142190235471962304991223187, 12.83958039609908379127755367542, 13.29515245160998271824835178101