L(s) = 1 | + (4 − 6.92i)2-s + (34.1 + 59.2i)3-s + (−31.9 − 55.4i)4-s + (13.0 + 22.6i)5-s + 546.·6-s + (−837. − 1.45e3i)7-s − 511.·8-s + (−1.24e3 + 2.15e3i)9-s + 208.·10-s − 5.50e3·11-s + (2.18e3 − 3.78e3i)12-s + (3.58e3 + 6.21e3i)13-s − 1.34e4·14-s + (−892. + 1.54e3i)15-s + (−2.04e3 + 3.54e3i)16-s + (509. − 883. i)17-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (0.730 + 1.26i)3-s + (−0.249 − 0.433i)4-s + (0.0466 + 0.0808i)5-s + 1.03·6-s + (−0.923 − 1.59i)7-s − 0.353·8-s + (−0.568 + 0.985i)9-s + 0.0660·10-s − 1.24·11-s + (0.365 − 0.633i)12-s + (0.453 + 0.784i)13-s − 1.30·14-s + (−0.0682 + 0.118i)15-s + (−0.125 + 0.216i)16-s + (0.0251 − 0.0435i)17-s + ⋯ |
Λ(s)=(=(74s/2ΓC(s)L(s)(−0.864+0.502i)Λ(8−s)
Λ(s)=(=(74s/2ΓC(s+7/2)L(s)(−0.864+0.502i)Λ(1−s)
Degree: |
2 |
Conductor: |
74
= 2⋅37
|
Sign: |
−0.864+0.502i
|
Analytic conductor: |
23.1164 |
Root analytic conductor: |
4.80796 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ74(47,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 74, ( :7/2), −0.864+0.502i)
|
Particular Values
L(4) |
≈ |
0.229878−0.852599i |
L(21) |
≈ |
0.229878−0.852599i |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−4+6.92i)T |
| 37 | 1+(−2.86e5+1.14e5i)T |
good | 3 | 1+(−34.1−59.2i)T+(−1.09e3+1.89e3i)T2 |
| 5 | 1+(−13.0−22.6i)T+(−3.90e4+6.76e4i)T2 |
| 7 | 1+(837.+1.45e3i)T+(−4.11e5+7.13e5i)T2 |
| 11 | 1+5.50e3T+1.94e7T2 |
| 13 | 1+(−3.58e3−6.21e3i)T+(−3.13e7+5.43e7i)T2 |
| 17 | 1+(−509.+883.i)T+(−2.05e8−3.55e8i)T2 |
| 19 | 1+(2.69e4+4.67e4i)T+(−4.46e8+7.74e8i)T2 |
| 23 | 1+1.06e5T+3.40e9T2 |
| 29 | 1+6.96e4T+1.72e10T2 |
| 31 | 1−1.61e5T+2.75e10T2 |
| 41 | 1+(−3.50e4−6.06e4i)T+(−9.73e10+1.68e11i)T2 |
| 43 | 1+5.96e5T+2.71e11T2 |
| 47 | 1+1.09e6T+5.06e11T2 |
| 53 | 1+(−1.79e5+3.10e5i)T+(−5.87e11−1.01e12i)T2 |
| 59 | 1+(−1.38e6+2.39e6i)T+(−1.24e12−2.15e12i)T2 |
| 61 | 1+(−1.38e6−2.40e6i)T+(−1.57e12+2.72e12i)T2 |
| 67 | 1+(−1.30e6−2.25e6i)T+(−3.03e12+5.24e12i)T2 |
| 71 | 1+(1.63e5+2.83e5i)T+(−4.54e12+7.87e12i)T2 |
| 73 | 1+2.90e6T+1.10e13T2 |
| 79 | 1+(−3.32e5−5.76e5i)T+(−9.60e12+1.66e13i)T2 |
| 83 | 1+(−1.29e6+2.24e6i)T+(−1.35e13−2.35e13i)T2 |
| 89 | 1+(2.19e6−3.79e6i)T+(−2.21e13−3.83e13i)T2 |
| 97 | 1−1.04e6T+8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.05885652368321602763072045436, −11.17940212893923547643854832067, −10.23547655600936257405001763470, −9.774447699959732133396469876034, −8.339638234860288968544222036435, −6.61681056783653010291888318701, −4.60105894034061668956106717707, −3.85322733940656867632648441464, −2.62905330795704709210735565687, −0.22376852600119187155226881562,
2.10316931988818556844018319946, 3.20062714827599164440517657547, 5.61408462412428829432984451682, 6.38410084061066073926577466461, 8.002045301139197254474714184916, 8.401782421455513318649939752053, 9.944431478748567948985240383450, 12.05142190235471962304991223187, 12.83958039609908379127755367542, 13.29515245160998271824835178101