L(s) = 1 | + (4 − 6.92i)2-s + (−27.0 − 46.8i)3-s + (−31.9 − 55.4i)4-s + (61.0 + 105. i)5-s − 433.·6-s + (612. + 1.06e3i)7-s − 511.·8-s + (−371. + 643. i)9-s + 976.·10-s + 8.41e3·11-s + (−1.73e3 + 3.00e3i)12-s + (2.86e3 + 4.95e3i)13-s + 9.79e3·14-s + (3.30e3 − 5.72e3i)15-s + (−2.04e3 + 3.54e3i)16-s + (−3.81e3 + 6.60e3i)17-s + ⋯ |
L(s) = 1 | + (0.353 − 0.612i)2-s + (−0.578 − 1.00i)3-s + (−0.249 − 0.433i)4-s + (0.218 + 0.378i)5-s − 0.818·6-s + (0.674 + 1.16i)7-s − 0.353·8-s + (−0.169 + 0.294i)9-s + 0.308·10-s + 1.90·11-s + (−0.289 + 0.501i)12-s + (0.361 + 0.625i)13-s + 0.953·14-s + (0.252 − 0.437i)15-s + (−0.125 + 0.216i)16-s + (−0.188 + 0.325i)17-s + ⋯ |
Λ(s)=(=(74s/2ΓC(s)L(s)(0.519+0.854i)Λ(8−s)
Λ(s)=(=(74s/2ΓC(s+7/2)L(s)(0.519+0.854i)Λ(1−s)
Degree: |
2 |
Conductor: |
74
= 2⋅37
|
Sign: |
0.519+0.854i
|
Analytic conductor: |
23.1164 |
Root analytic conductor: |
4.80796 |
Motivic weight: |
7 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ74(47,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 74, ( :7/2), 0.519+0.854i)
|
Particular Values
L(4) |
≈ |
2.01426−1.13245i |
L(21) |
≈ |
2.01426−1.13245i |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−4+6.92i)T |
| 37 | 1+(1.19e5+2.83e5i)T |
good | 3 | 1+(27.0+46.8i)T+(−1.09e3+1.89e3i)T2 |
| 5 | 1+(−61.0−105.i)T+(−3.90e4+6.76e4i)T2 |
| 7 | 1+(−612.−1.06e3i)T+(−4.11e5+7.13e5i)T2 |
| 11 | 1−8.41e3T+1.94e7T2 |
| 13 | 1+(−2.86e3−4.95e3i)T+(−3.13e7+5.43e7i)T2 |
| 17 | 1+(3.81e3−6.60e3i)T+(−2.05e8−3.55e8i)T2 |
| 19 | 1+(−6.66e3−1.15e4i)T+(−4.46e8+7.74e8i)T2 |
| 23 | 1+9.29e4T+3.40e9T2 |
| 29 | 1−1.94e5T+1.72e10T2 |
| 31 | 1−4.01e4T+2.75e10T2 |
| 41 | 1+(−4.26e5−7.37e5i)T+(−9.73e10+1.68e11i)T2 |
| 43 | 1−1.00e6T+2.71e11T2 |
| 47 | 1+6.11e5T+5.06e11T2 |
| 53 | 1+(−4.15e5+7.20e5i)T+(−5.87e11−1.01e12i)T2 |
| 59 | 1+(−1.26e6+2.19e6i)T+(−1.24e12−2.15e12i)T2 |
| 61 | 1+(1.31e5+2.28e5i)T+(−1.57e12+2.72e12i)T2 |
| 67 | 1+(−8.53e5−1.47e6i)T+(−3.03e12+5.24e12i)T2 |
| 71 | 1+(−4.56e5−7.91e5i)T+(−4.54e12+7.87e12i)T2 |
| 73 | 1+1.98e6T+1.10e13T2 |
| 79 | 1+(1.41e6+2.44e6i)T+(−9.60e12+1.66e13i)T2 |
| 83 | 1+(1.15e6−2.00e6i)T+(−1.35e13−2.35e13i)T2 |
| 89 | 1+(4.52e6−7.84e6i)T+(−2.21e13−3.83e13i)T2 |
| 97 | 1+1.55e7T+8.07e13T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.52376871716852797659896373097, −11.92577903316085488389917954025, −11.29144129499507629743939362086, −9.627545802454106466562133026449, −8.413878564851907714225329539247, −6.56973967743199412380590551454, −5.95905142937234605423555197276, −4.14800057202212877224135851619, −2.16059720699662407091108010526, −1.18162310942227803836733542089,
1.00508528616452608598175543655, 3.92498371040600341897429673864, 4.59904749643555784916069684511, 5.93292669483692639491905300907, 7.29316910116129920005422174409, 8.768035809238113754456304402905, 9.979696272647546219108381878250, 11.06336580281585156361648487620, 12.11386264445556975146959587786, 13.70474880114004099936355195136