L(s) = 1 | + (−0.766 + 0.642i)2-s + (−1.43 − 1.20i)3-s + (0.173 − 0.984i)4-s + (3.31 − 1.20i)5-s + 1.87·6-s + (0.826 − 0.300i)7-s + (0.500 + 0.866i)8-s + (0.0923 + 0.524i)9-s + (−1.76 + 3.05i)10-s + (−1.67 − 2.89i)11-s + (−1.43 + 1.20i)12-s + (−1.11 + 6.31i)13-s + (−0.439 + 0.761i)14-s + (−6.23 − 2.27i)15-s + (−0.939 − 0.342i)16-s + (−0.520 − 2.95i)17-s + ⋯ |
L(s) = 1 | + (−0.541 + 0.454i)2-s + (−0.831 − 0.697i)3-s + (0.0868 − 0.492i)4-s + (1.48 − 0.540i)5-s + 0.767·6-s + (0.312 − 0.113i)7-s + (0.176 + 0.306i)8-s + (0.0307 + 0.174i)9-s + (−0.558 + 0.967i)10-s + (−0.504 − 0.874i)11-s + (−0.415 + 0.348i)12-s + (−0.308 + 1.75i)13-s + (−0.117 + 0.203i)14-s + (−1.61 − 0.586i)15-s + (−0.234 − 0.0855i)16-s + (−0.126 − 0.716i)17-s + ⋯ |
Λ(s)=(=(74s/2ΓC(s)L(s)(0.880+0.473i)Λ(2−s)
Λ(s)=(=(74s/2ΓC(s+1/2)L(s)(0.880+0.473i)Λ(1−s)
Degree: |
2 |
Conductor: |
74
= 2⋅37
|
Sign: |
0.880+0.473i
|
Analytic conductor: |
0.590892 |
Root analytic conductor: |
0.768695 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ74(49,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 74, ( :1/2), 0.880+0.473i)
|
Particular Values
L(1) |
≈ |
0.678508−0.170826i |
L(21) |
≈ |
0.678508−0.170826i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.766−0.642i)T |
| 37 | 1+(3.44−5.01i)T |
good | 3 | 1+(1.43+1.20i)T+(0.520+2.95i)T2 |
| 5 | 1+(−3.31+1.20i)T+(3.83−3.21i)T2 |
| 7 | 1+(−0.826+0.300i)T+(5.36−4.49i)T2 |
| 11 | 1+(1.67+2.89i)T+(−5.5+9.52i)T2 |
| 13 | 1+(1.11−6.31i)T+(−12.2−4.44i)T2 |
| 17 | 1+(0.520+2.95i)T+(−15.9+5.81i)T2 |
| 19 | 1+(−3.55−2.98i)T+(3.29+18.7i)T2 |
| 23 | 1+(2.91−5.05i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−1.63−2.83i)T+(−14.5+25.1i)T2 |
| 31 | 1+1.12T+31T2 |
| 41 | 1+(−1.49+8.45i)T+(−38.5−14.0i)T2 |
| 43 | 1−5.61T+43T2 |
| 47 | 1+(−2.56+4.44i)T+(−23.5−40.7i)T2 |
| 53 | 1+(0.252+0.0918i)T+(40.6+34.0i)T2 |
| 59 | 1+(7.15+2.60i)T+(45.1+37.9i)T2 |
| 61 | 1+(−0.369+2.09i)T+(−57.3−20.8i)T2 |
| 67 | 1+(8.01−2.91i)T+(51.3−43.0i)T2 |
| 71 | 1+(−10.0−8.45i)T+(12.3+69.9i)T2 |
| 73 | 1+8.57T+73T2 |
| 79 | 1+(−10.8+3.96i)T+(60.5−50.7i)T2 |
| 83 | 1+(−0.724−4.10i)T+(−77.9+28.3i)T2 |
| 89 | 1+(7.86+2.86i)T+(68.1+57.2i)T2 |
| 97 | 1+(−8.53+14.7i)T+(−48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.07589548316873670257593598046, −13.72130744303775566914454541995, −12.24059055514355753039499905888, −11.22108590087094980326940917592, −9.792830713763479052593183120255, −8.920002900746058253705129010598, −7.25307361417278530826443201261, −6.10008485594824768482219715413, −5.25838212421876824016455278450, −1.59013270866072073062704600361,
2.49377108056394432966295850798, 4.96917904069463441676932877451, 6.06633479311166729227181358383, 7.81205207965268755664204507915, 9.556268847832162792380504731987, 10.36678143118228997176234470288, 10.80560483297321943769679328476, 12.37130676594942482871804590783, 13.40741425438717766319729073544, 14.79219508229132085500120868295