L(s) = 1 | + (−0.766 + 0.642i)2-s + (−1.43 − 1.20i)3-s + (0.173 − 0.984i)4-s + (3.31 − 1.20i)5-s + 1.87·6-s + (0.826 − 0.300i)7-s + (0.500 + 0.866i)8-s + (0.0923 + 0.524i)9-s + (−1.76 + 3.05i)10-s + (−1.67 − 2.89i)11-s + (−1.43 + 1.20i)12-s + (−1.11 + 6.31i)13-s + (−0.439 + 0.761i)14-s + (−6.23 − 2.27i)15-s + (−0.939 − 0.342i)16-s + (−0.520 − 2.95i)17-s + ⋯ |
L(s) = 1 | + (−0.541 + 0.454i)2-s + (−0.831 − 0.697i)3-s + (0.0868 − 0.492i)4-s + (1.48 − 0.540i)5-s + 0.767·6-s + (0.312 − 0.113i)7-s + (0.176 + 0.306i)8-s + (0.0307 + 0.174i)9-s + (−0.558 + 0.967i)10-s + (−0.504 − 0.874i)11-s + (−0.415 + 0.348i)12-s + (−0.308 + 1.75i)13-s + (−0.117 + 0.203i)14-s + (−1.61 − 0.586i)15-s + (−0.234 − 0.0855i)16-s + (−0.126 − 0.716i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.880 + 0.473i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.880 + 0.473i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.678508 - 0.170826i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.678508 - 0.170826i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.766 - 0.642i)T \) |
| 37 | \( 1 + (3.44 - 5.01i)T \) |
good | 3 | \( 1 + (1.43 + 1.20i)T + (0.520 + 2.95i)T^{2} \) |
| 5 | \( 1 + (-3.31 + 1.20i)T + (3.83 - 3.21i)T^{2} \) |
| 7 | \( 1 + (-0.826 + 0.300i)T + (5.36 - 4.49i)T^{2} \) |
| 11 | \( 1 + (1.67 + 2.89i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (1.11 - 6.31i)T + (-12.2 - 4.44i)T^{2} \) |
| 17 | \( 1 + (0.520 + 2.95i)T + (-15.9 + 5.81i)T^{2} \) |
| 19 | \( 1 + (-3.55 - 2.98i)T + (3.29 + 18.7i)T^{2} \) |
| 23 | \( 1 + (2.91 - 5.05i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.63 - 2.83i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 1.12T + 31T^{2} \) |
| 41 | \( 1 + (-1.49 + 8.45i)T + (-38.5 - 14.0i)T^{2} \) |
| 43 | \( 1 - 5.61T + 43T^{2} \) |
| 47 | \( 1 + (-2.56 + 4.44i)T + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (0.252 + 0.0918i)T + (40.6 + 34.0i)T^{2} \) |
| 59 | \( 1 + (7.15 + 2.60i)T + (45.1 + 37.9i)T^{2} \) |
| 61 | \( 1 + (-0.369 + 2.09i)T + (-57.3 - 20.8i)T^{2} \) |
| 67 | \( 1 + (8.01 - 2.91i)T + (51.3 - 43.0i)T^{2} \) |
| 71 | \( 1 + (-10.0 - 8.45i)T + (12.3 + 69.9i)T^{2} \) |
| 73 | \( 1 + 8.57T + 73T^{2} \) |
| 79 | \( 1 + (-10.8 + 3.96i)T + (60.5 - 50.7i)T^{2} \) |
| 83 | \( 1 + (-0.724 - 4.10i)T + (-77.9 + 28.3i)T^{2} \) |
| 89 | \( 1 + (7.86 + 2.86i)T + (68.1 + 57.2i)T^{2} \) |
| 97 | \( 1 + (-8.53 + 14.7i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.07589548316873670257593598046, −13.72130744303775566914454541995, −12.24059055514355753039499905888, −11.22108590087094980326940917592, −9.792830713763479052593183120255, −8.920002900746058253705129010598, −7.25307361417278530826443201261, −6.10008485594824768482219715413, −5.25838212421876824016455278450, −1.59013270866072073062704600361,
2.49377108056394432966295850798, 4.96917904069463441676932877451, 6.06633479311166729227181358383, 7.81205207965268755664204507915, 9.556268847832162792380504731987, 10.36678143118228997176234470288, 10.80560483297321943769679328476, 12.37130676594942482871804590783, 13.40741425438717766319729073544, 14.79219508229132085500120868295