L(s) = 1 | + (0.866 + 0.5i)2-s + (0.366 + 0.633i)3-s + (0.499 + 0.866i)4-s + (−1.5 + 0.866i)5-s + 0.732i·6-s + (−2 − 3.46i)7-s + 0.999i·8-s + (1.23 − 2.13i)9-s − 1.73·10-s + 4.73·11-s + (−0.366 + 0.633i)12-s + (−5.19 + 3i)13-s − 3.99i·14-s + (−1.09 − 0.633i)15-s + (−0.5 + 0.866i)16-s + (−1.5 − 0.866i)17-s + ⋯ |
L(s) = 1 | + (0.612 + 0.353i)2-s + (0.211 + 0.366i)3-s + (0.249 + 0.433i)4-s + (−0.670 + 0.387i)5-s + 0.298i·6-s + (−0.755 − 1.30i)7-s + 0.353i·8-s + (0.410 − 0.711i)9-s − 0.547·10-s + 1.42·11-s + (−0.105 + 0.183i)12-s + (−1.44 + 0.832i)13-s − 1.06i·14-s + (−0.283 − 0.163i)15-s + (−0.125 + 0.216i)16-s + (−0.363 − 0.210i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.783 - 0.621i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 74 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.783 - 0.621i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.11787 + 0.389595i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.11787 + 0.389595i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.866 - 0.5i)T \) |
| 37 | \( 1 + (0.5 - 6.06i)T \) |
good | 3 | \( 1 + (-0.366 - 0.633i)T + (-1.5 + 2.59i)T^{2} \) |
| 5 | \( 1 + (1.5 - 0.866i)T + (2.5 - 4.33i)T^{2} \) |
| 7 | \( 1 + (2 + 3.46i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 - 4.73T + 11T^{2} \) |
| 13 | \( 1 + (5.19 - 3i)T + (6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (1.5 + 0.866i)T + (8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (1.09 - 0.633i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + 1.26iT - 23T^{2} \) |
| 29 | \( 1 - 4.26iT - 29T^{2} \) |
| 31 | \( 1 - 1.26iT - 31T^{2} \) |
| 41 | \( 1 + (0.232 + 0.401i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + 9.46iT - 43T^{2} \) |
| 47 | \( 1 - 11.6T + 47T^{2} \) |
| 53 | \( 1 + (-1.26 + 2.19i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + (2.19 + 1.26i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-12.6 + 7.33i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.09 + 5.36i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (1.26 + 2.19i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 12.3T + 73T^{2} \) |
| 79 | \( 1 + (7.09 - 4.09i)T + (39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + (5.83 - 10.0i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (-4.5 - 2.59i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 5.19iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.62734859744811519789407056604, −13.93607461460691835680073444993, −12.52591161735497669367802514914, −11.64267762420174043955853688278, −10.19986489249041837987230741306, −9.110551508020049280683057617745, −7.12647051850906816776564857636, −6.78100534759549792262131656320, −4.35454702863015530219870428384, −3.58944060761563235987323413755,
2.51376875735871320420041919262, 4.35134283526187355372783058123, 5.88587712832323210442287172801, 7.36174003860689635232227643703, 8.811045922484158659445534165781, 9.986894660542854734188828077346, 11.65577624120736091332227575421, 12.36378321700036164341244961116, 13.07385757784209236748937081089, 14.49399322052545502238429443521