L(s) = 1 | + (0.866 + 0.5i)2-s + (0.366 + 0.633i)3-s + (0.499 + 0.866i)4-s + (−1.5 + 0.866i)5-s + 0.732i·6-s + (−2 − 3.46i)7-s + 0.999i·8-s + (1.23 − 2.13i)9-s − 1.73·10-s + 4.73·11-s + (−0.366 + 0.633i)12-s + (−5.19 + 3i)13-s − 3.99i·14-s + (−1.09 − 0.633i)15-s + (−0.5 + 0.866i)16-s + (−1.5 − 0.866i)17-s + ⋯ |
L(s) = 1 | + (0.612 + 0.353i)2-s + (0.211 + 0.366i)3-s + (0.249 + 0.433i)4-s + (−0.670 + 0.387i)5-s + 0.298i·6-s + (−0.755 − 1.30i)7-s + 0.353i·8-s + (0.410 − 0.711i)9-s − 0.547·10-s + 1.42·11-s + (−0.105 + 0.183i)12-s + (−1.44 + 0.832i)13-s − 1.06i·14-s + (−0.283 − 0.163i)15-s + (−0.125 + 0.216i)16-s + (−0.363 − 0.210i)17-s + ⋯ |
Λ(s)=(=(74s/2ΓC(s)L(s)(0.783−0.621i)Λ(2−s)
Λ(s)=(=(74s/2ΓC(s+1/2)L(s)(0.783−0.621i)Λ(1−s)
Degree: |
2 |
Conductor: |
74
= 2⋅37
|
Sign: |
0.783−0.621i
|
Analytic conductor: |
0.590892 |
Root analytic conductor: |
0.768695 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ74(27,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 74, ( :1/2), 0.783−0.621i)
|
Particular Values
L(1) |
≈ |
1.11787+0.389595i |
L(21) |
≈ |
1.11787+0.389595i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.866−0.5i)T |
| 37 | 1+(0.5−6.06i)T |
good | 3 | 1+(−0.366−0.633i)T+(−1.5+2.59i)T2 |
| 5 | 1+(1.5−0.866i)T+(2.5−4.33i)T2 |
| 7 | 1+(2+3.46i)T+(−3.5+6.06i)T2 |
| 11 | 1−4.73T+11T2 |
| 13 | 1+(5.19−3i)T+(6.5−11.2i)T2 |
| 17 | 1+(1.5+0.866i)T+(8.5+14.7i)T2 |
| 19 | 1+(1.09−0.633i)T+(9.5−16.4i)T2 |
| 23 | 1+1.26iT−23T2 |
| 29 | 1−4.26iT−29T2 |
| 31 | 1−1.26iT−31T2 |
| 41 | 1+(0.232+0.401i)T+(−20.5+35.5i)T2 |
| 43 | 1+9.46iT−43T2 |
| 47 | 1−11.6T+47T2 |
| 53 | 1+(−1.26+2.19i)T+(−26.5−45.8i)T2 |
| 59 | 1+(2.19+1.26i)T+(29.5+51.0i)T2 |
| 61 | 1+(−12.6+7.33i)T+(30.5−52.8i)T2 |
| 67 | 1+(3.09+5.36i)T+(−33.5+58.0i)T2 |
| 71 | 1+(1.26+2.19i)T+(−35.5+61.4i)T2 |
| 73 | 1+12.3T+73T2 |
| 79 | 1+(7.09−4.09i)T+(39.5−68.4i)T2 |
| 83 | 1+(5.83−10.0i)T+(−41.5−71.8i)T2 |
| 89 | 1+(−4.5−2.59i)T+(44.5+77.0i)T2 |
| 97 | 1+5.19iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−14.62734859744811519789407056604, −13.93607461460691835680073444993, −12.52591161735497669367802514914, −11.64267762420174043955853688278, −10.19986489249041837987230741306, −9.110551508020049280683057617745, −7.12647051850906816776564857636, −6.78100534759549792262131656320, −4.35454702863015530219870428384, −3.58944060761563235987323413755,
2.51376875735871320420041919262, 4.35134283526187355372783058123, 5.88587712832323210442287172801, 7.36174003860689635232227643703, 8.811045922484158659445534165781, 9.986894660542854734188828077346, 11.65577624120736091332227575421, 12.36378321700036164341244961116, 13.07385757784209236748937081089, 14.49399322052545502238429443521