L(s) = 1 | + (−0.766 − 0.642i)2-s + (0.173 + 0.984i)4-s + (0.939 − 0.342i)5-s + (0.500 − 0.866i)8-s + (−0.984 − 0.173i)9-s + (−0.939 − 0.342i)10-s + (−0.300 − 1.70i)13-s + (−0.939 + 0.342i)16-s + (1.85 + 0.326i)17-s + (0.642 + 0.766i)18-s + (0.499 + 0.866i)20-s + (0.766 − 0.642i)25-s + (−0.866 + 1.5i)26-s + (0.424 + 1.58i)29-s + (0.939 + 0.342i)32-s + ⋯ |
L(s) = 1 | + (−0.766 − 0.642i)2-s + (0.173 + 0.984i)4-s + (0.939 − 0.342i)5-s + (0.500 − 0.866i)8-s + (−0.984 − 0.173i)9-s + (−0.939 − 0.342i)10-s + (−0.300 − 1.70i)13-s + (−0.939 + 0.342i)16-s + (1.85 + 0.326i)17-s + (0.642 + 0.766i)18-s + (0.499 + 0.866i)20-s + (0.766 − 0.642i)25-s + (−0.866 + 1.5i)26-s + (0.424 + 1.58i)29-s + (0.939 + 0.342i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.402 + 0.915i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.402 + 0.915i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7454049575\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7454049575\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.766 + 0.642i)T \) |
| 5 | \( 1 + (-0.939 + 0.342i)T \) |
| 37 | \( 1 + (0.173 + 0.984i)T \) |
good | 3 | \( 1 + (0.984 + 0.173i)T^{2} \) |
| 7 | \( 1 + (-0.642 + 0.766i)T^{2} \) |
| 11 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (0.300 + 1.70i)T + (-0.939 + 0.342i)T^{2} \) |
| 17 | \( 1 + (-1.85 - 0.326i)T + (0.939 + 0.342i)T^{2} \) |
| 19 | \( 1 + (-0.984 - 0.173i)T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.424 - 1.58i)T + (-0.866 + 0.5i)T^{2} \) |
| 31 | \( 1 - iT^{2} \) |
| 41 | \( 1 + (0.673 - 0.118i)T + (0.939 - 0.342i)T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 53 | \( 1 + (0.469 + 0.218i)T + (0.642 + 0.766i)T^{2} \) |
| 59 | \( 1 + (-0.642 - 0.766i)T^{2} \) |
| 61 | \( 1 + (0.657 - 0.939i)T + (-0.342 - 0.939i)T^{2} \) |
| 67 | \( 1 + (0.642 - 0.766i)T^{2} \) |
| 71 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 73 | \( 1 + (1.36 - 1.36i)T - iT^{2} \) |
| 79 | \( 1 + (0.642 - 0.766i)T^{2} \) |
| 83 | \( 1 + (-0.342 + 0.939i)T^{2} \) |
| 89 | \( 1 + (0.766 - 1.64i)T + (-0.642 - 0.766i)T^{2} \) |
| 97 | \( 1 + (1.70 - 0.984i)T + (0.5 - 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.29776744569413910367237493448, −9.746758031704562688262585902362, −8.725406834184771288192408357594, −8.179925549647441831291120289873, −7.17805794646791810437837496436, −5.83349196701273292691492765263, −5.22072874071745622412873736648, −3.43660816832380720117629417738, −2.69465447410502764290323074582, −1.16952663504902888006865938130,
1.68215166914304830762483112233, 2.87569636221968225739938126366, 4.71897853176888414933725195004, 5.72564433105895538204688455209, 6.33167879203969423404567351207, 7.27959131436953335663125500516, 8.184921411907399112112546221942, 9.142667816413862388465947885479, 9.721785065154202841368552316871, 10.42013829865048491058343455980