L(s) = 1 | + (−0.766 − 0.642i)2-s + (0.173 + 0.984i)4-s + (0.939 − 0.342i)5-s + (0.500 − 0.866i)8-s + (−0.984 − 0.173i)9-s + (−0.939 − 0.342i)10-s + (−0.300 − 1.70i)13-s + (−0.939 + 0.342i)16-s + (1.85 + 0.326i)17-s + (0.642 + 0.766i)18-s + (0.499 + 0.866i)20-s + (0.766 − 0.642i)25-s + (−0.866 + 1.5i)26-s + (0.424 + 1.58i)29-s + (0.939 + 0.342i)32-s + ⋯ |
L(s) = 1 | + (−0.766 − 0.642i)2-s + (0.173 + 0.984i)4-s + (0.939 − 0.342i)5-s + (0.500 − 0.866i)8-s + (−0.984 − 0.173i)9-s + (−0.939 − 0.342i)10-s + (−0.300 − 1.70i)13-s + (−0.939 + 0.342i)16-s + (1.85 + 0.326i)17-s + (0.642 + 0.766i)18-s + (0.499 + 0.866i)20-s + (0.766 − 0.642i)25-s + (−0.866 + 1.5i)26-s + (0.424 + 1.58i)29-s + (0.939 + 0.342i)32-s + ⋯ |
Λ(s)=(=(740s/2ΓC(s)L(s)(0.402+0.915i)Λ(1−s)
Λ(s)=(=(740s/2ΓC(s)L(s)(0.402+0.915i)Λ(1−s)
Degree: |
2 |
Conductor: |
740
= 22⋅5⋅37
|
Sign: |
0.402+0.915i
|
Analytic conductor: |
0.369308 |
Root analytic conductor: |
0.607707 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ740(203,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 740, ( :0), 0.402+0.915i)
|
Particular Values
L(21) |
≈ |
0.7454049575 |
L(21) |
≈ |
0.7454049575 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.766+0.642i)T |
| 5 | 1+(−0.939+0.342i)T |
| 37 | 1+(0.173+0.984i)T |
good | 3 | 1+(0.984+0.173i)T2 |
| 7 | 1+(−0.642+0.766i)T2 |
| 11 | 1+(−0.5−0.866i)T2 |
| 13 | 1+(0.300+1.70i)T+(−0.939+0.342i)T2 |
| 17 | 1+(−1.85−0.326i)T+(0.939+0.342i)T2 |
| 19 | 1+(−0.984−0.173i)T2 |
| 23 | 1+(0.5−0.866i)T2 |
| 29 | 1+(−0.424−1.58i)T+(−0.866+0.5i)T2 |
| 31 | 1−iT2 |
| 41 | 1+(0.673−0.118i)T+(0.939−0.342i)T2 |
| 43 | 1−T2 |
| 47 | 1+(−0.866−0.5i)T2 |
| 53 | 1+(0.469+0.218i)T+(0.642+0.766i)T2 |
| 59 | 1+(−0.642−0.766i)T2 |
| 61 | 1+(0.657−0.939i)T+(−0.342−0.939i)T2 |
| 67 | 1+(0.642−0.766i)T2 |
| 71 | 1+(−0.173+0.984i)T2 |
| 73 | 1+(1.36−1.36i)T−iT2 |
| 79 | 1+(0.642−0.766i)T2 |
| 83 | 1+(−0.342+0.939i)T2 |
| 89 | 1+(0.766−1.64i)T+(−0.642−0.766i)T2 |
| 97 | 1+(1.70−0.984i)T+(0.5−0.866i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.29776744569413910367237493448, −9.746758031704562688262585902362, −8.725406834184771288192408357594, −8.179925549647441831291120289873, −7.17805794646791810437837496436, −5.83349196701273292691492765263, −5.22072874071745622412873736648, −3.43660816832380720117629417738, −2.69465447410502764290323074582, −1.16952663504902888006865938130,
1.68215166914304830762483112233, 2.87569636221968225739938126366, 4.71897853176888414933725195004, 5.72564433105895538204688455209, 6.33167879203969423404567351207, 7.27959131436953335663125500516, 8.184921411907399112112546221942, 9.142667816413862388465947885479, 9.721785065154202841368552316871, 10.42013829865048491058343455980