L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + (0.5 + 0.866i)5-s − 0.999·8-s + (0.866 − 0.5i)9-s + (−0.499 + 0.866i)10-s + (−0.5 − 0.866i)16-s + (−0.866 + 0.5i)17-s + (0.866 + 0.499i)18-s − 0.999·20-s + (−0.499 + 0.866i)25-s + (−1.36 − 1.36i)29-s + (0.499 − 0.866i)32-s + (−0.866 − 0.499i)34-s + 0.999i·36-s + (0.5 − 0.866i)37-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)2-s + (−0.499 + 0.866i)4-s + (0.5 + 0.866i)5-s − 0.999·8-s + (0.866 − 0.5i)9-s + (−0.499 + 0.866i)10-s + (−0.5 − 0.866i)16-s + (−0.866 + 0.5i)17-s + (0.866 + 0.499i)18-s − 0.999·20-s + (−0.499 + 0.866i)25-s + (−1.36 − 1.36i)29-s + (0.499 − 0.866i)32-s + (−0.866 − 0.499i)34-s + 0.999i·36-s + (0.5 − 0.866i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.225 - 0.974i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.225 - 0.974i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.251187461\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.251187461\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.5 - 0.866i)T \) |
| 5 | \( 1 + (-0.5 - 0.866i)T \) |
| 37 | \( 1 + (-0.5 + 0.866i)T \) |
good | 3 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 7 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 17 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 29 | \( 1 + (1.36 + 1.36i)T + iT^{2} \) |
| 31 | \( 1 + iT^{2} \) |
| 41 | \( 1 + (-1.5 - 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 + (1.36 + 0.366i)T + (0.866 + 0.5i)T^{2} \) |
| 59 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 61 | \( 1 + (0.133 + 0.5i)T + (-0.866 + 0.5i)T^{2} \) |
| 67 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 71 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 73 | \( 1 + (-1 - i)T + iT^{2} \) |
| 79 | \( 1 + (0.866 - 0.5i)T^{2} \) |
| 83 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 89 | \( 1 + (-0.5 + 1.86i)T + (-0.866 - 0.5i)T^{2} \) |
| 97 | \( 1 + 1.73iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.86481111491667575834183680764, −9.725173866119507080972075135382, −9.206078889347198386960389734135, −7.933226388413676591947642152807, −7.20363872443069096447963506122, −6.38789767005818476704323356775, −5.77683177957120665944352441486, −4.42681742662814673991137640070, −3.63116014445746739502726494614, −2.28030511325651558850514323947,
1.39292907590708956352563782486, 2.46039640090340936447841501605, 3.97559605157620104112206889515, 4.78413602946531058890191952009, 5.52633697890719694886187861951, 6.64228808549735282631470119688, 7.84539888300516030834792492577, 9.128687938855312489228429816665, 9.399992504841354745923449455754, 10.51088412438761264198334635941