L(s) = 1 | − i·2-s − 4-s + i·5-s + i·8-s + i·9-s + 10-s + 16-s + 2·17-s + 18-s − i·20-s − 25-s + (−1 + i)29-s − i·32-s − 2i·34-s − i·36-s − i·37-s + ⋯ |
L(s) = 1 | − i·2-s − 4-s + i·5-s + i·8-s + i·9-s + 10-s + 16-s + 2·17-s + 18-s − i·20-s − 25-s + (−1 + i)29-s − i·32-s − 2i·34-s − i·36-s − i·37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.988 + 0.148i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.988 + 0.148i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8687453087\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8687453087\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 5 | \( 1 - iT \) |
| 37 | \( 1 + iT \) |
good | 3 | \( 1 - iT^{2} \) |
| 7 | \( 1 - iT^{2} \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 - 2T + T^{2} \) |
| 19 | \( 1 - iT^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 + (1 - i)T - iT^{2} \) |
| 31 | \( 1 - iT^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 - iT^{2} \) |
| 53 | \( 1 + (-1 + i)T - iT^{2} \) |
| 59 | \( 1 - iT^{2} \) |
| 61 | \( 1 + (1 + i)T + iT^{2} \) |
| 67 | \( 1 + iT^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 + (1 + i)T + iT^{2} \) |
| 79 | \( 1 - iT^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 + (-1 + i)T - iT^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.57813614425359603213208867668, −10.02904491616834568720827439624, −9.107829446704716072264366223918, −7.909115558792915112305275725088, −7.39903171173445046694591710730, −5.87958463340048995073013933301, −5.09421290498138495675666327786, −3.76033614175963782059800560877, −2.94503992374843256784392617654, −1.77624255501839965468835099483,
1.08203045151597496778684276714, 3.43889508708290576948611783833, 4.34697812104293897324953036548, 5.48481998210826103065977876402, 5.99987968102262097613565408915, 7.21895728688323744159414885855, 7.996143520107648956585897053323, 8.788542336512110385131804257079, 9.584726181061094742404565105427, 10.12558537338091247494720843241