L(s) = 1 | + (−0.642 + 0.766i)2-s + (−0.173 − 0.984i)4-s + (−0.866 + 0.5i)5-s + (0.866 + 0.500i)8-s + (−0.984 − 0.173i)9-s + (0.173 − 0.984i)10-s + (−1.70 + 0.300i)13-s + (−0.939 + 0.342i)16-s + (−0.326 + 1.85i)17-s + (0.766 − 0.642i)18-s + (0.642 + 0.766i)20-s + (0.499 − 0.866i)25-s + (0.866 − 1.5i)26-s + (−1.10 + 0.296i)29-s + (0.342 − 0.939i)32-s + ⋯ |
L(s) = 1 | + (−0.642 + 0.766i)2-s + (−0.173 − 0.984i)4-s + (−0.866 + 0.5i)5-s + (0.866 + 0.500i)8-s + (−0.984 − 0.173i)9-s + (0.173 − 0.984i)10-s + (−1.70 + 0.300i)13-s + (−0.939 + 0.342i)16-s + (−0.326 + 1.85i)17-s + (0.766 − 0.642i)18-s + (0.642 + 0.766i)20-s + (0.499 − 0.866i)25-s + (0.866 − 1.5i)26-s + (−1.10 + 0.296i)29-s + (0.342 − 0.939i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.991 + 0.129i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 740 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.991 + 0.129i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2160406191\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2160406191\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.642 - 0.766i)T \) |
| 5 | \( 1 + (0.866 - 0.5i)T \) |
| 37 | \( 1 + (0.984 - 0.173i)T \) |
good | 3 | \( 1 + (0.984 + 0.173i)T^{2} \) |
| 7 | \( 1 + (-0.642 + 0.766i)T^{2} \) |
| 11 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + (1.70 - 0.300i)T + (0.939 - 0.342i)T^{2} \) |
| 17 | \( 1 + (0.326 - 1.85i)T + (-0.939 - 0.342i)T^{2} \) |
| 19 | \( 1 + (0.984 + 0.173i)T^{2} \) |
| 23 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 + (1.10 - 0.296i)T + (0.866 - 0.5i)T^{2} \) |
| 31 | \( 1 + iT^{2} \) |
| 41 | \( 1 + (0.673 - 0.118i)T + (0.939 - 0.342i)T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 53 | \( 1 + (-1.75 - 0.816i)T + (0.642 + 0.766i)T^{2} \) |
| 59 | \( 1 + (0.642 + 0.766i)T^{2} \) |
| 61 | \( 1 + (1.34 + 0.939i)T + (0.342 + 0.939i)T^{2} \) |
| 67 | \( 1 + (0.642 - 0.766i)T^{2} \) |
| 71 | \( 1 + (-0.173 + 0.984i)T^{2} \) |
| 73 | \( 1 + (0.366 - 0.366i)T - iT^{2} \) |
| 79 | \( 1 + (-0.642 + 0.766i)T^{2} \) |
| 83 | \( 1 + (-0.342 + 0.939i)T^{2} \) |
| 89 | \( 1 + (-0.766 - 0.357i)T + (0.642 + 0.766i)T^{2} \) |
| 97 | \( 1 + (-0.984 - 1.70i)T + (-0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.78573242845632052298450444410, −10.19565576859877230127883895140, −9.077945622766835542890790410631, −8.396855831102107880701440872705, −7.57617842656709222780475678907, −6.85555154275597116354539113067, −5.92168592939420545764735099763, −4.89405850244638940842002075876, −3.71093115109255188414317923255, −2.20053531237598777928723014866,
0.26425341263058568824718342544, 2.35959192368561298468016594127, 3.27384209442318755550405282664, 4.57362919981585083632500902903, 5.32334068625903488577332558593, 7.23126773648736526316478578562, 7.54049558681938444147841112023, 8.657586401099017395626706294932, 9.211803544473543828639454450513, 10.10419928121821147805369176242