Properties

Label 2-7488-1.1-c1-0-26
Degree $2$
Conductor $7488$
Sign $1$
Analytic cond. $59.7919$
Root an. cond. $7.73252$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.96·5-s + 3.35·7-s − 1.61·11-s − 13-s − 2·17-s + 3.35·19-s + 6.70·23-s + 3.77·25-s + 2·29-s + 6.57·31-s − 9.92·35-s − 7.92·37-s − 6.96·41-s + 0.775·43-s − 2.38·47-s + 4.22·49-s + 11.9·53-s + 4.77·55-s + 0.312·59-s − 14.6·61-s + 2.96·65-s − 8.12·67-s + 4.31·71-s + 0.0752·73-s − 5.40·77-s + 12·79-s − 8.31·83-s + ⋯
L(s)  = 1  − 1.32·5-s + 1.26·7-s − 0.486·11-s − 0.277·13-s − 0.485·17-s + 0.768·19-s + 1.39·23-s + 0.755·25-s + 0.371·29-s + 1.18·31-s − 1.67·35-s − 1.30·37-s − 1.08·41-s + 0.118·43-s − 0.348·47-s + 0.603·49-s + 1.63·53-s + 0.643·55-s + 0.0407·59-s − 1.87·61-s + 0.367·65-s − 0.992·67-s + 0.511·71-s + 0.00880·73-s − 0.615·77-s + 1.35·79-s − 0.912·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7488 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7488 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7488\)    =    \(2^{6} \cdot 3^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(59.7919\)
Root analytic conductor: \(7.73252\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7488,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.579105544\)
\(L(\frac12)\) \(\approx\) \(1.579105544\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + T \)
good5 \( 1 + 2.96T + 5T^{2} \)
7 \( 1 - 3.35T + 7T^{2} \)
11 \( 1 + 1.61T + 11T^{2} \)
17 \( 1 + 2T + 17T^{2} \)
19 \( 1 - 3.35T + 19T^{2} \)
23 \( 1 - 6.70T + 23T^{2} \)
29 \( 1 - 2T + 29T^{2} \)
31 \( 1 - 6.57T + 31T^{2} \)
37 \( 1 + 7.92T + 37T^{2} \)
41 \( 1 + 6.96T + 41T^{2} \)
43 \( 1 - 0.775T + 43T^{2} \)
47 \( 1 + 2.38T + 47T^{2} \)
53 \( 1 - 11.9T + 53T^{2} \)
59 \( 1 - 0.312T + 59T^{2} \)
61 \( 1 + 14.6T + 61T^{2} \)
67 \( 1 + 8.12T + 67T^{2} \)
71 \( 1 - 4.31T + 71T^{2} \)
73 \( 1 - 0.0752T + 73T^{2} \)
79 \( 1 - 12T + 79T^{2} \)
83 \( 1 + 8.31T + 83T^{2} \)
89 \( 1 + 8.88T + 89T^{2} \)
97 \( 1 + 7.92T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.87063958850289665498721407599, −7.31900304101506295312246204597, −6.78354640072515807917903922580, −5.60724651571279611181471486807, −4.78336427849866541207808466992, −4.60004364452379918966947151817, −3.52049552020079625817028026724, −2.83594817358113390293985464194, −1.70414296122522619717905847046, −0.64456675466878730988556042329, 0.64456675466878730988556042329, 1.70414296122522619717905847046, 2.83594817358113390293985464194, 3.52049552020079625817028026724, 4.60004364452379918966947151817, 4.78336427849866541207808466992, 5.60724651571279611181471486807, 6.78354640072515807917903922580, 7.31900304101506295312246204597, 7.87063958850289665498721407599

Graph of the $Z$-function along the critical line