L(s) = 1 | + 1.90·3-s + 2.90·5-s − 7-s + 0.618·9-s + 2.79·11-s + 1.95·13-s + 5.52·15-s + 17-s − 4.42·19-s − 1.90·21-s + 1.72·23-s + 3.42·25-s − 4.53·27-s − 8.15·29-s + 9.64·31-s + 5.31·33-s − 2.90·35-s + 2.61·37-s + 3.71·39-s − 1.43·41-s + 8.99·43-s + 1.79·45-s + 2.65·47-s + 49-s + 1.90·51-s + 4.50·53-s + 8.10·55-s + ⋯ |
L(s) = 1 | + 1.09·3-s + 1.29·5-s − 0.377·7-s + 0.206·9-s + 0.842·11-s + 0.541·13-s + 1.42·15-s + 0.242·17-s − 1.01·19-s − 0.415·21-s + 0.360·23-s + 0.684·25-s − 0.871·27-s − 1.51·29-s + 1.73·31-s + 0.925·33-s − 0.490·35-s + 0.429·37-s + 0.594·39-s − 0.224·41-s + 1.37·43-s + 0.267·45-s + 0.387·47-s + 0.142·49-s + 0.266·51-s + 0.618·53-s + 1.09·55-s + ⋯ |
Λ(s)=(=(7616s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(7616s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
4.163583163 |
L(21) |
≈ |
4.163583163 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+T |
| 17 | 1−T |
good | 3 | 1−1.90T+3T2 |
| 5 | 1−2.90T+5T2 |
| 11 | 1−2.79T+11T2 |
| 13 | 1−1.95T+13T2 |
| 19 | 1+4.42T+19T2 |
| 23 | 1−1.72T+23T2 |
| 29 | 1+8.15T+29T2 |
| 31 | 1−9.64T+31T2 |
| 37 | 1−2.61T+37T2 |
| 41 | 1+1.43T+41T2 |
| 43 | 1−8.99T+43T2 |
| 47 | 1−2.65T+47T2 |
| 53 | 1−4.50T+53T2 |
| 59 | 1+12.2T+59T2 |
| 61 | 1−13.8T+61T2 |
| 67 | 1−11.8T+67T2 |
| 71 | 1−8.64T+71T2 |
| 73 | 1−2.37T+73T2 |
| 79 | 1−8.59T+79T2 |
| 83 | 1−10.8T+83T2 |
| 89 | 1+14.0T+89T2 |
| 97 | 1−14.0T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.052339268933643340096031021568, −7.18617137714968631093070196980, −6.30742426914204626502146480120, −6.04408708699242834405831665720, −5.13195312169683749382178793611, −4.05129539922926690655285107763, −3.50815935918370658877403873936, −2.49840489940042788632842785416, −2.07153974051976643135584399764, −1.00029120283349766712854490917,
1.00029120283349766712854490917, 2.07153974051976643135584399764, 2.49840489940042788632842785416, 3.50815935918370658877403873936, 4.05129539922926690655285107763, 5.13195312169683749382178793611, 6.04408708699242834405831665720, 6.30742426914204626502146480120, 7.18617137714968631093070196980, 8.052339268933643340096031021568