Properties

Label 2-7650-1.1-c1-0-33
Degree $2$
Conductor $7650$
Sign $1$
Analytic cond. $61.0855$
Root an. cond. $7.81572$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 7-s − 8-s + 3·11-s + 4·13-s + 14-s + 16-s + 17-s − 5·19-s − 3·22-s + 8·23-s − 4·26-s − 28-s + 4·29-s − 3·31-s − 32-s − 34-s + 7·37-s + 5·38-s − 2·41-s + 43-s + 3·44-s − 8·46-s − 7·47-s − 6·49-s + 4·52-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.377·7-s − 0.353·8-s + 0.904·11-s + 1.10·13-s + 0.267·14-s + 1/4·16-s + 0.242·17-s − 1.14·19-s − 0.639·22-s + 1.66·23-s − 0.784·26-s − 0.188·28-s + 0.742·29-s − 0.538·31-s − 0.176·32-s − 0.171·34-s + 1.15·37-s + 0.811·38-s − 0.312·41-s + 0.152·43-s + 0.452·44-s − 1.17·46-s − 1.02·47-s − 6/7·49-s + 0.554·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7650\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(61.0855\)
Root analytic conductor: \(7.81572\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7650,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.591146593\)
\(L(\frac12)\) \(\approx\) \(1.591146593\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 \)
17 \( 1 - T \)
good7 \( 1 + T + p T^{2} \)
11 \( 1 - 3 T + p T^{2} \)
13 \( 1 - 4 T + p T^{2} \)
19 \( 1 + 5 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 - 4 T + p T^{2} \)
31 \( 1 + 3 T + p T^{2} \)
37 \( 1 - 7 T + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 - T + p T^{2} \)
47 \( 1 + 7 T + p T^{2} \)
53 \( 1 - 7 T + p T^{2} \)
59 \( 1 - 8 T + p T^{2} \)
61 \( 1 + 2 T + p T^{2} \)
67 \( 1 - 11 T + p T^{2} \)
71 \( 1 - 6 T + p T^{2} \)
73 \( 1 - 2 T + p T^{2} \)
79 \( 1 + 15 T + p T^{2} \)
83 \( 1 - 16 T + p T^{2} \)
89 \( 1 + 2 T + p T^{2} \)
97 \( 1 + 10 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.135292844046089664559906175869, −7.01740364334808750521314711647, −6.63898337253409794146618749411, −6.05399666296688153162808443071, −5.14787043994372317388094418023, −4.15843427047876882349228250562, −3.47462301731735252674209775046, −2.62891927239608265743979570517, −1.54999844370951157077561065508, −0.74929188852310592680180496602, 0.74929188852310592680180496602, 1.54999844370951157077561065508, 2.62891927239608265743979570517, 3.47462301731735252674209775046, 4.15843427047876882349228250562, 5.14787043994372317388094418023, 6.05399666296688153162808443071, 6.63898337253409794146618749411, 7.01740364334808750521314711647, 8.135292844046089664559906175869

Graph of the $Z$-function along the critical line