L(s) = 1 | + (1 − 1.41i)3-s − 2.82i·5-s − 2.82i·7-s + (−1.00 − 2.82i)9-s + 2·11-s + 4·13-s + (−4.00 − 2.82i)15-s + 5.65i·17-s + 2.82i·19-s + (−4.00 − 2.82i)21-s − 8·23-s − 3.00·25-s + (−5.00 − 1.41i)27-s + 2.82i·29-s − 8.48i·31-s + ⋯ |
L(s) = 1 | + (0.577 − 0.816i)3-s − 1.26i·5-s − 1.06i·7-s + (−0.333 − 0.942i)9-s + 0.603·11-s + 1.10·13-s + (−1.03 − 0.730i)15-s + 1.37i·17-s + 0.648i·19-s + (−0.872 − 0.617i)21-s − 1.66·23-s − 0.600·25-s + (−0.962 − 0.272i)27-s + 0.525i·29-s − 1.52i·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.577 + 0.816i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 768 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.577 + 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.853101 - 1.64806i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.853101 - 1.64806i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-1 + 1.41i)T \) |
good | 5 | \( 1 + 2.82iT - 5T^{2} \) |
| 7 | \( 1 + 2.82iT - 7T^{2} \) |
| 11 | \( 1 - 2T + 11T^{2} \) |
| 13 | \( 1 - 4T + 13T^{2} \) |
| 17 | \( 1 - 5.65iT - 17T^{2} \) |
| 19 | \( 1 - 2.82iT - 19T^{2} \) |
| 23 | \( 1 + 8T + 23T^{2} \) |
| 29 | \( 1 - 2.82iT - 29T^{2} \) |
| 31 | \( 1 + 8.48iT - 31T^{2} \) |
| 37 | \( 1 - 4T + 37T^{2} \) |
| 41 | \( 1 - 41T^{2} \) |
| 43 | \( 1 - 2.82iT - 43T^{2} \) |
| 47 | \( 1 + 47T^{2} \) |
| 53 | \( 1 - 8.48iT - 53T^{2} \) |
| 59 | \( 1 - 6T + 59T^{2} \) |
| 61 | \( 1 - 4T + 61T^{2} \) |
| 67 | \( 1 + 14.1iT - 67T^{2} \) |
| 71 | \( 1 + 8T + 71T^{2} \) |
| 73 | \( 1 - 10T + 73T^{2} \) |
| 79 | \( 1 - 2.82iT - 79T^{2} \) |
| 83 | \( 1 - 6T + 83T^{2} \) |
| 89 | \( 1 - 5.65iT - 89T^{2} \) |
| 97 | \( 1 + 6T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.855412101229841779083687311730, −8.994596815513396479366892225998, −8.182631434351678903266495681889, −7.76900236477270828771675802500, −6.44171877092891243843215888464, −5.84569945370550628814190632473, −4.15801066384631971584738330440, −3.77015201184958142725796690470, −1.80494644618733160370409467942, −0.944281193568862877142394867146,
2.25943473043660764430411741962, 3.07660828285776428562006821508, 4.00130827318759063374247396910, 5.27042862733379677804268421892, 6.22670110820432856620595626044, 7.12465929549730367019309647976, 8.281710285438635550797649542370, 8.961369816676942957874767219788, 9.765423492759884298144469063424, 10.51790162432362088151821340791