L(s) = 1 | − 3-s − 4·5-s − 2·9-s − 3·11-s + 2·13-s + 4·15-s + 2·17-s − 6·23-s + 11·25-s + 5·27-s − 4·29-s + 10·31-s + 3·33-s + 2·37-s − 2·39-s + 9·41-s + 4·43-s + 8·45-s + 12·47-s − 7·49-s − 2·51-s − 2·53-s + 12·55-s + 59-s − 8·61-s − 8·65-s − 9·67-s + ⋯ |
L(s) = 1 | − 0.577·3-s − 1.78·5-s − 2/3·9-s − 0.904·11-s + 0.554·13-s + 1.03·15-s + 0.485·17-s − 1.25·23-s + 11/5·25-s + 0.962·27-s − 0.742·29-s + 1.79·31-s + 0.522·33-s + 0.328·37-s − 0.320·39-s + 1.40·41-s + 0.609·43-s + 1.19·45-s + 1.75·47-s − 49-s − 0.280·51-s − 0.274·53-s + 1.61·55-s + 0.130·59-s − 1.02·61-s − 0.992·65-s − 1.09·67-s + ⋯ |
Λ(s)=(=(5776s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(5776s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 19 | 1 |
good | 3 | 1+T+pT2 |
| 5 | 1+4T+pT2 |
| 7 | 1+pT2 |
| 11 | 1+3T+pT2 |
| 13 | 1−2T+pT2 |
| 17 | 1−2T+pT2 |
| 23 | 1+6T+pT2 |
| 29 | 1+4T+pT2 |
| 31 | 1−10T+pT2 |
| 37 | 1−2T+pT2 |
| 41 | 1−9T+pT2 |
| 43 | 1−4T+pT2 |
| 47 | 1−12T+pT2 |
| 53 | 1+2T+pT2 |
| 59 | 1−T+pT2 |
| 61 | 1+8T+pT2 |
| 67 | 1+9T+pT2 |
| 71 | 1−6T+pT2 |
| 73 | 1+9T+pT2 |
| 79 | 1−4T+pT2 |
| 83 | 1−5T+pT2 |
| 89 | 1+18T+pT2 |
| 97 | 1−T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−7.84291285553569302803646666567, −7.25281256893503607163488926699, −6.18133217332434823974698514600, −5.72056544906938218909518824058, −4.70361893560692538945006993689, −4.16988049041125598647554401476, −3.30209644061830425490225828028, −2.57233604129214373443319462753, −0.900922910872936613997172410594, 0,
0.900922910872936613997172410594, 2.57233604129214373443319462753, 3.30209644061830425490225828028, 4.16988049041125598647554401476, 4.70361893560692538945006993689, 5.72056544906938218909518824058, 6.18133217332434823974698514600, 7.25281256893503607163488926699, 7.84291285553569302803646666567