Properties

Label 2-76e2-1.1-c1-0-63
Degree $2$
Conductor $5776$
Sign $-1$
Analytic cond. $46.1215$
Root an. cond. $6.79128$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 4·5-s − 2·9-s − 3·11-s + 2·13-s + 4·15-s + 2·17-s − 6·23-s + 11·25-s + 5·27-s − 4·29-s + 10·31-s + 3·33-s + 2·37-s − 2·39-s + 9·41-s + 4·43-s + 8·45-s + 12·47-s − 7·49-s − 2·51-s − 2·53-s + 12·55-s + 59-s − 8·61-s − 8·65-s − 9·67-s + ⋯
L(s)  = 1  − 0.577·3-s − 1.78·5-s − 2/3·9-s − 0.904·11-s + 0.554·13-s + 1.03·15-s + 0.485·17-s − 1.25·23-s + 11/5·25-s + 0.962·27-s − 0.742·29-s + 1.79·31-s + 0.522·33-s + 0.328·37-s − 0.320·39-s + 1.40·41-s + 0.609·43-s + 1.19·45-s + 1.75·47-s − 49-s − 0.280·51-s − 0.274·53-s + 1.61·55-s + 0.130·59-s − 1.02·61-s − 0.992·65-s − 1.09·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 5776 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 5776 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(5776\)    =    \(2^{4} \cdot 19^{2}\)
Sign: $-1$
Analytic conductor: \(46.1215\)
Root analytic conductor: \(6.79128\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 5776,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
19 \( 1 \)
good3 \( 1 + T + p T^{2} \)
5 \( 1 + 4 T + p T^{2} \)
7 \( 1 + p T^{2} \)
11 \( 1 + 3 T + p T^{2} \)
13 \( 1 - 2 T + p T^{2} \)
17 \( 1 - 2 T + p T^{2} \)
23 \( 1 + 6 T + p T^{2} \)
29 \( 1 + 4 T + p T^{2} \)
31 \( 1 - 10 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 - 9 T + p T^{2} \)
43 \( 1 - 4 T + p T^{2} \)
47 \( 1 - 12 T + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 - T + p T^{2} \)
61 \( 1 + 8 T + p T^{2} \)
67 \( 1 + 9 T + p T^{2} \)
71 \( 1 - 6 T + p T^{2} \)
73 \( 1 + 9 T + p T^{2} \)
79 \( 1 - 4 T + p T^{2} \)
83 \( 1 - 5 T + p T^{2} \)
89 \( 1 + 18 T + p T^{2} \)
97 \( 1 - T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.84291285553569302803646666567, −7.25281256893503607163488926699, −6.18133217332434823974698514600, −5.72056544906938218909518824058, −4.70361893560692538945006993689, −4.16988049041125598647554401476, −3.30209644061830425490225828028, −2.57233604129214373443319462753, −0.900922910872936613997172410594, 0, 0.900922910872936613997172410594, 2.57233604129214373443319462753, 3.30209644061830425490225828028, 4.16988049041125598647554401476, 4.70361893560692538945006993689, 5.72056544906938218909518824058, 6.18133217332434823974698514600, 7.25281256893503607163488926699, 7.84291285553569302803646666567

Graph of the $Z$-function along the critical line