L(s) = 1 | + (0.258 − 0.965i)2-s + (−0.5 − 0.133i)3-s + (−0.866 − 0.499i)4-s + (−0.258 + 0.448i)6-s + (−0.707 + 0.707i)8-s + (−0.633 − 0.366i)9-s + (−0.448 − 1.67i)11-s + (0.366 + 0.366i)12-s + (0.500 + 0.866i)16-s + (0.607 − 0.465i)17-s + (−0.517 + 0.517i)18-s + (−1.70 − 0.707i)19-s − 1.73·22-s + (0.448 − 0.258i)24-s + (−0.965 + 0.258i)25-s + ⋯ |
L(s) = 1 | + (0.258 − 0.965i)2-s + (−0.5 − 0.133i)3-s + (−0.866 − 0.499i)4-s + (−0.258 + 0.448i)6-s + (−0.707 + 0.707i)8-s + (−0.633 − 0.366i)9-s + (−0.448 − 1.67i)11-s + (0.366 + 0.366i)12-s + (0.500 + 0.866i)16-s + (0.607 − 0.465i)17-s + (−0.517 + 0.517i)18-s + (−1.70 − 0.707i)19-s − 1.73·22-s + (0.448 − 0.258i)24-s + (−0.965 + 0.258i)25-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 776 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.988 + 0.150i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 776 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.988 + 0.150i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.6159303363\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6159303363\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.258 + 0.965i)T \) |
| 97 | \( 1 + (-0.965 - 0.258i)T \) |
good | 3 | \( 1 + (0.5 + 0.133i)T + (0.866 + 0.5i)T^{2} \) |
| 5 | \( 1 + (0.965 - 0.258i)T^{2} \) |
| 7 | \( 1 + (-0.258 - 0.965i)T^{2} \) |
| 11 | \( 1 + (0.448 + 1.67i)T + (-0.866 + 0.5i)T^{2} \) |
| 13 | \( 1 + (0.965 - 0.258i)T^{2} \) |
| 17 | \( 1 + (-0.607 + 0.465i)T + (0.258 - 0.965i)T^{2} \) |
| 19 | \( 1 + (1.70 + 0.707i)T + (0.707 + 0.707i)T^{2} \) |
| 23 | \( 1 + (0.258 - 0.965i)T^{2} \) |
| 29 | \( 1 + (-0.965 + 0.258i)T^{2} \) |
| 31 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 37 | \( 1 + (0.258 + 0.965i)T^{2} \) |
| 41 | \( 1 + (-1.83 + 0.241i)T + (0.965 - 0.258i)T^{2} \) |
| 43 | \( 1 + (-1.67 + 0.965i)T + (0.5 - 0.866i)T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 59 | \( 1 + (0.465 - 0.607i)T + (-0.258 - 0.965i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (1.83 + 0.758i)T + (0.707 + 0.707i)T^{2} \) |
| 71 | \( 1 + (-0.965 - 0.258i)T^{2} \) |
| 73 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + iT^{2} \) |
| 83 | \( 1 + (-0.965 + 0.741i)T + (0.258 - 0.965i)T^{2} \) |
| 89 | \( 1 + (-1.36 + 1.36i)T - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.60615728948549847803231219739, −9.189515313106483178959743360759, −8.765967120107860215228710268017, −7.67220622493348100173052151093, −5.97913435975849543813228924201, −5.87058753213018978890023400031, −4.55781201495843219272400564559, −3.42335981777669448746719898302, −2.48455882516805052692740620302, −0.61880480843703651093382163743,
2.34931219759139854850813734566, 4.03481393650677739636832972219, 4.72744558259182194716843405847, 5.76689320552756515461892229368, 6.35275262755267581849566263579, 7.57285033966932380270249165507, 8.037831727905725490350999759741, 9.126815958579719719589482102132, 10.05088531229595852296275932457, 10.73818409727594933778739849942